About the Project

hyperbolic secant function

AdvancedHelp

(0.003 seconds)

21—30 of 32 matching pages

21: 10.24 Functions of Imaginary Order
J ~ ν ( x ) = sech ( 1 2 π ν ) ( J i ν ( x ) ) ,
Y ~ ν ( x ) = sech ( 1 2 π ν ) ( Y i ν ( x ) ) ,
22: 22.11 Fourier and Hyperbolic Series
23: 4.38 Inverse Hyperbolic Functions: Further Properties
4.38.13 d d z arcsech z = 1 z ( 1 z 2 ) 1 / 2 .
24: 10.32 Integral Representations
10.32.7 K ν ( x ) = sec ( 1 2 ν π ) 0 cos ( x sinh t ) cosh ( ν t ) d t = csc ( 1 2 ν π ) 0 sin ( x sinh t ) sinh ( ν t ) d t , | ν | < 1 , x > 0 .
25: 4.45 Methods of Computation
Hyperbolic and Inverse Hyperbolic Functions
The hyperbolic functions can be computed directly from the definitions (4.28.1)–(4.28.7). The inverses arcsinh , arccosh , and arctanh can be computed from the logarithmic forms given in §4.37(iv), with real arguments. For arccsch , arcsech , and arccoth we have (4.37.7)–(4.37.9). … Similarly for the hyperbolic and inverse hyperbolic functions; compare (4.28.1)–(4.28.7), §4.37(iv), and (4.37.7)–(4.37.9). …
26: 22.19 Physical Applications
§22.19(i) Classical Dynamics: The Pendulum
Both the dn and cn solutions approach a sech t as a 2 / β from the appropriate directions.
§22.19(iii) Nonlinear ODEs and PDEs
§22.19(v) Other Applications
27: 19.23 Integral Representations
19.23.1 R F ( 0 , y , z ) = 0 π / 2 ( y cos 2 θ + z sin 2 θ ) 1 / 2 d θ ,
19.23.4 R F ( 0 , y , z ) = 2 π 0 π / 2 R C ( y , z cos 2 θ ) d θ = 2 π 0 R C ( y cosh 2 t , z ) d t .
Also, in (19.23.8) and (19.23.10) B denotes the beta function5.12). …
19.23.8 R a ( 𝐛 ; 𝐳 ) = 2 B ( b 1 , b 2 ) 0 π / 2 ( z 1 cos 2 θ + z 2 sin 2 θ ) a ( cos θ ) 2 b 1 1 ( sin θ ) 2 b 2 1 d θ , b 1 , b 2 > 0 ; z 1 , z 2 > 0 .
28: 4.15 Graphics
§4.15(i) Real Arguments
§4.15(iii) Complex Arguments: Surfaces
In the graphics shown in this subsection height corresponds to the absolute value of the function and color to the phase. … The corresponding surfaces for cos ( x + i y ) , cot ( x + i y ) , and sec ( x + i y ) are similar. … The corresponding surfaces for arccos ( x + i y ) , arccot ( x + i y ) , arcsec ( x + i y ) can be visualized from Figures 4.15.9, 4.15.11, 4.15.13 with the aid of equations (4.23.16)–(4.23.18).
29: 10.43 Integrals
§10.43(i) Indefinite Integrals
§10.43(iii) Fractional Integrals
The Kontorovich–Lebedev transform of a function g ( x ) is defined as …
30: 1.14 Integral Transforms
The Fourier transform of a real- or complex-valued function f ( t ) is defined by … Suppose f ( t ) is a real- or complex-valued function and s is a real or complex parameter. …
Periodic Functions
The Mellin transform of a real- or complex-valued function f ( x ) is defined by … The Stieltjes transform of a real-valued function f ( t ) is defined by …