About the Project

hyperbolic cotangent function

AdvancedHelp

(0.007 seconds)

11—20 of 34 matching pages

11: 4.40 Integrals
β–Ί
4.40.6 coth ⁑ x ⁒ d x = ln ⁑ ( sinh ⁑ x ) , 0 < x < .
β–Ί
4.40.7 0 e x ⁒ sin ⁑ ( a ⁒ x ) sinh ⁑ x ⁒ d x = 1 2 ⁒ Ο€ ⁒ coth ⁑ ( 1 2 ⁒ Ο€ ⁒ a ) 1 a , a 0 ,
β–Ί
4.40.16 arccoth ⁑ x ⁒ d x = x ⁒ arccoth ⁑ x + 1 2 ⁒ ln ⁑ ( x 2 1 ) , 1 < x < .
12: 5.4 Special Values and Extrema
β–Ί
5.4.16 ⁑ ψ ⁑ ( i ⁒ y ) = 1 2 ⁒ y + Ο€ 2 ⁒ coth ⁑ ( Ο€ ⁒ y ) ,
β–Ί
5.4.18 ⁑ ψ ⁑ ( 1 + i ⁒ y ) = 1 2 ⁒ y + Ο€ 2 ⁒ coth ⁑ ( Ο€ ⁒ y ) .
13: 4.36 Infinite Products and Partial Fractions
β–Ί
4.36.3 coth ⁑ z = 1 z + 2 ⁒ z ⁒ n = 1 1 z 2 + n 2 ⁒ Ο€ 2 ,
14: 28.23 Expansions in Series of Bessel Functions
β–Ί
28.23.5 me Ξ½ ⁑ ( 1 2 ⁒ Ο€ , h 2 ) ⁒ M Ξ½ ( j ) ⁑ ( z , h ) = i ⁒ e i ⁒ Ξ½ ⁒ Ο€ / 2 ⁒ coth ⁑ z ⁒ n = ( Ξ½ + 2 ⁒ n ) ⁒ c 2 ⁒ n Ξ½ ⁑ ( h 2 ) ⁒ π’ž Ξ½ + 2 ⁒ n ( j ) ⁑ ( 2 ⁒ h ⁒ sinh ⁑ z ) ,
β–Ί
28.23.9 Mc 2 ⁒ m + 1 ( j ) ⁑ ( z , h ) = ( 1 ) m + 1 ⁒ ( ce 2 ⁒ m + 1 ⁑ ( 1 2 ⁒ Ο€ , h 2 ) ) 1 ⁒ coth ⁑ z ⁒ β„“ = 0 ( 2 ⁒ β„“ + 1 ) ⁒ A 2 ⁒ β„“ + 1 2 ⁒ m + 1 ⁑ ( h 2 ) ⁒ π’ž 2 ⁒ β„“ + 1 ( j ) ⁑ ( 2 ⁒ h ⁒ sinh ⁑ z ) ,
β–Ί
28.23.13 Ms 2 ⁒ m + 2 ( j ) ⁑ ( z , h ) = ( 1 ) m + 1 ⁒ ( se 2 ⁒ m + 2 ⁑ ( 1 2 ⁒ Ο€ , h 2 ) ) 1 ⁒ coth ⁑ z ⁒ β„“ = 0 ( 2 ⁒ β„“ + 2 ) ⁒ B 2 ⁒ β„“ + 2 2 ⁒ m + 2 ⁑ ( h 2 ) ⁒ π’ž 2 ⁒ β„“ + 2 ( j ) ⁑ ( 2 ⁒ h ⁒ sinh ⁑ z ) .
15: 4.23 Inverse Trigonometric Functions
β–Ί β–Ί
16: 10.7 Limiting Forms
β–Ί
10.7.6 Y i ⁒ Ξ½ ⁑ ( z ) = i ⁒ csch ⁑ ( Ξ½ ⁒ Ο€ ) Ξ“ ⁑ ( 1 i ⁒ Ξ½ ) ⁒ ( 1 2 ⁒ z ) i ⁒ Ξ½ i ⁒ coth ⁑ ( Ξ½ ⁒ Ο€ ) Ξ“ ⁑ ( 1 + i ⁒ Ξ½ ) ⁒ ( 1 2 ⁒ z ) i ⁒ Ξ½ + e | Ξ½ ⁒ ph ⁑ z | ⁒ o ⁑ ( 1 ) , Ξ½ ℝ and Ξ½ 0 .
17: 22.5 Special Values
§22.5 Special Values
β–ΊFor the other nine functions ratios can be taken; compare (22.2.10). … β–Ί
§22.5(ii) Limiting Values of k
β–ΊIn these cases the elliptic functions degenerate into elementary trigonometric and hyperbolic functions, respectively. … β–Ί
18: 4.38 Inverse Hyperbolic Functions: Further Properties
β–Ί
4.38.14 d d z ⁑ arccoth ⁑ z = 1 1 z 2 .
β–Ί
4.38.19 Arctanh ⁑ u ± Arccoth ⁑ v = Arctanh ⁑ ( u ⁒ v ± 1 v ± u ) = Arccoth ⁑ ( v ± u u ⁒ v ± 1 ) .
19: 10.19 Asymptotic Expansions for Large Order
§10.19 Asymptotic Expansions for Large Order
β–Ί
§10.19(i) Asymptotic Forms
β–Ί
§10.19(ii) Debye’s Expansions
β–Ί
§10.19(iii) Transition Region
β–ΊSee also §10.20(i).
20: 15.12 Asymptotic Approximations
β–Ί
15.12.5 𝐅 ⁑ ( a + Ξ» , b Ξ» c ; 1 2 1 2 ⁒ z ) = 2 ( a + b 1 ) / 2 ⁒ ( z + 1 ) ( c a b 1 ) / 2 ( z 1 ) c / 2 ⁒ ΞΆ ⁒ sinh ⁑ ΞΆ ⁒ ( Ξ» + 1 2 ⁒ a 1 2 ⁒ b ) 1 c ⁒ ( I c 1 ⁑ ( ( Ξ» + 1 2 ⁒ a 1 2 ⁒ b ) ⁒ ΞΆ ) ⁒ ( 1 + O ⁑ ( Ξ» 2 ) ) + I c 2 ⁑ ( ( Ξ» + 1 2 ⁒ a 1 2 ⁒ b ) ⁒ ΞΆ ) 2 ⁒ Ξ» + a b ⁒ ( ( c 1 2 ) ⁒ ( c 3 2 ) ⁒ ( 1 ΞΆ coth ⁑ ΞΆ ) + 1 2 ⁒ ( 2 ⁒ c a b 1 ) ⁒ ( a + b 1 ) ⁒ tanh ⁑ ( 1 2 ⁒ ΞΆ ) + O ⁑ ( Ξ» 2 ) ) ) ,