About the Project

hyperbolic cosine function

AdvancedHelp

(0.017 seconds)

21—30 of 105 matching pages

21: 14.18 Sums
14.18.4 P ν ( cosh ξ 1 cosh ξ 2 sinh ξ 1 sinh ξ 2 cos ϕ ) = P ν ( cosh ξ 1 ) P ν ( cosh ξ 2 ) + 2 m = 1 ( 1 ) m P ν m ( cosh ξ 1 ) P ν m ( cosh ξ 2 ) cos ( m ϕ ) ,
14.18.5 Q ν ( cosh ξ 1 cosh ξ 2 sinh ξ 1 sinh ξ 2 cos ϕ ) = P ν ( cosh ξ 1 ) Q ν ( cosh ξ 2 ) + 2 m = 1 ( 1 ) m P ν m ( cosh ξ 1 ) Q ν m ( cosh ξ 2 ) cos ( m ϕ ) .
22: 4.33 Maclaurin Series and Laurent Series
4.33.2 cosh z = 1 + z 2 2 ! + z 4 4 ! + .
23: 29.5 Special Cases and Limiting Forms
29.5.5 lim k 1 𝐸𝑐 ν m ( z , k 2 ) 𝐸𝑐 ν m ( 0 , k 2 ) = lim k 1 𝐸𝑠 ν m + 1 ( z , k 2 ) 𝐸𝑠 ν m + 1 ( 0 , k 2 ) = 1 ( cosh z ) μ F ( 1 2 μ 1 2 ν , 1 2 μ + 1 2 ν + 1 2 1 2 ; tanh 2 z ) , m even,
29.5.6 lim k 1 𝐸𝑐 ν m ( z , k 2 ) d 𝐸𝑐 ν m ( z , k 2 ) / d z | z = 0 = lim k 1 𝐸𝑠 ν m + 1 ( z , k 2 ) d 𝐸𝑠 ν m + 1 ( z , k 2 ) / d z | z = 0 = tanh z ( cosh z ) μ F ( 1 2 μ 1 2 ν + 1 2 , 1 2 μ + 1 2 ν + 1 3 2 ; tanh 2 z ) , m odd,
24: 14.5 Special Values
14.5.15 P ν 1 / 2 ( cosh ξ ) = ( 2 π sinh ξ ) 1 / 2 cosh ( ( ν + 1 2 ) ξ ) ,
14.5.16 P ν 1 / 2 ( cosh ξ ) = ( 2 π sinh ξ ) 1 / 2 sinh ( ( ν + 1 2 ) ξ ) ν + 1 2 ,
14.5.17 𝑸 ν ± 1 / 2 ( cosh ξ ) = ( π 2 sinh ξ ) 1 / 2 exp ( ( ν + 1 2 ) ξ ) Γ ( ν + 3 2 ) .
14.5.19 P ν ν ( cosh ξ ) = ( sinh ξ ) ν 2 ν Γ ( ν + 1 ) .
25: 24.7 Integral Representations
24.7.7 B 2 n ( x ) = ( 1 ) n + 1 2 n 0 cos ( 2 π x ) e 2 π t cosh ( 2 π t ) cos ( 2 π x ) t 2 n 1 d t , n = 1 , 2 , ,
24.7.8 B 2 n + 1 ( x ) = ( 1 ) n + 1 ( 2 n + 1 ) 0 sin ( 2 π x ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n d t .
24.7.9 E 2 n ( x ) = ( 1 ) n 4 0 sin ( π x ) cosh ( π t ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n d t ,
24.7.10 E 2 n + 1 ( x ) = ( 1 ) n + 1 4 0 cos ( π x ) sinh ( π t ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n + 1 d t .
26: 28.28 Integrals, Integral Representations, and Integral Equations
27: 14.12 Integral Representations
14.12.3 𝖰 ν μ ( cos θ ) = π 1 / 2 Γ ( ν + μ + 1 ) ( sin θ ) μ 2 μ + 1 Γ ( μ + 1 2 ) Γ ( ν μ + 1 ) ( 0 ( sinh t ) 2 μ ( cos θ + i sin θ cosh t ) ν + μ + 1 d t + 0 ( sinh t ) 2 μ ( cos θ i sin θ cosh t ) ν + μ + 1 d t ) , 0 < θ < π , μ > 1 2 , ν ± μ > 1 .
14.12.4 P ν μ ( x ) = 2 1 / 2 Γ ( μ + 1 2 ) ( x 2 1 ) μ / 2 π 1 / 2 Γ ( ν + μ + 1 ) Γ ( μ ν ) 0 cosh ( ( ν + 1 2 ) t ) ( x + cosh t ) μ + ( 1 / 2 ) d t , ν + μ 1 , 2 , 3 , , ( μ ν ) > 0 .
14.12.6 𝑸 ν μ ( x ) = π 1 / 2 ( x 2 1 ) μ / 2 2 μ Γ ( μ + 1 2 ) Γ ( ν μ + 1 ) 0 ( sinh t ) 2 μ ( x + ( x 2 1 ) 1 / 2 cosh t ) ν + μ + 1 d t , ( ν + 1 ) > μ > 1 2 .
14.12.9 𝑸 n m ( x ) = 1 n ! 0 u ( x ( x 2 1 ) 1 / 2 cosh t ) n cosh ( m t ) d t ,
28: 4.36 Infinite Products and Partial Fractions
4.36.2 cosh z = n = 1 ( 1 + 4 z 2 ( 2 n 1 ) 2 π 2 ) .
29: 20.10 Integrals
20.10.5 0 e s t θ 3 ( ( 1 + β ) π 2 | i π t 2 ) d t = 0 e s t θ 4 ( β π 2 | i π t 2 ) d t = s cosh ( β s ) csch ( s ) .
30: 10.35 Generating Function and Associated Series
§10.35 Generating Function and Associated Series
Jacobi–Anger expansions: for z , θ ,
10.35.2 e z cos θ = I 0 ( z ) + 2 k = 1 I k ( z ) cos ( k θ ) ,
10.35.3 e z sin θ = I 0 ( z ) + 2 k = 0 ( 1 ) k I 2 k + 1 ( z ) sin ( ( 2 k + 1 ) θ ) + 2 k = 1 ( 1 ) k I 2 k ( z ) cos ( 2 k θ ) .
cosh z = I 0 ( z ) + 2 I 2 ( z ) + 2 I 4 ( z ) + 2 I 6 ( z ) + ,