About the Project

hyperbolic cosecant function

AdvancedHelp

(0.007 seconds)

11—20 of 32 matching pages

11: 24.7 Integral Representations
24.7.2 B 2 n = ( 1 ) n + 1 4 n 0 t 2 n 1 e 2 π t 1 d t = ( 1 ) n + 1 2 n 0 t 2 n 1 e π t csch ( π t ) d t ,
24.7.4 B 2 n = ( 1 ) n + 1 π 0 t 2 n csch 2 ( π t ) d t ,
12: 22.5 Special Values
§22.5 Special Values
For the other nine functions ratios can be taken; compare (22.2.10). …
§22.5(ii) Limiting Values of k
In these cases the elliptic functions degenerate into elementary trigonometric and hyperbolic functions, respectively. …
13: 20.10 Integrals
20.10.5 0 e s t θ 3 ( ( 1 + β ) π 2 | i π t 2 ) d t = 0 e s t θ 4 ( β π 2 | i π t 2 ) d t = s cosh ( β s ) csch ( s ) .
14: 4.23 Inverse Trigonometric Functions
15: 4.35 Identities
4.35.13 csch 2 z = coth 2 z 1 .
16: 10.7 Limiting Forms
10.7.6 Y i ν ( z ) = i csch ( ν π ) Γ ( 1 i ν ) ( 1 2 z ) i ν i coth ( ν π ) Γ ( 1 + i ν ) ( 1 2 z ) i ν + e | ν ph z | o ( 1 ) , ν and ν 0 .
17: 4.38 Inverse Hyperbolic Functions: Further Properties
4.38.12 d d z arccsch z = 1 z ( 1 + z 2 ) 1 / 2 , z 0 .
18: 10.32 Integral Representations
10.32.7 K ν ( x ) = sec ( 1 2 ν π ) 0 cos ( x sinh t ) cosh ( ν t ) d t = csc ( 1 2 ν π ) 0 sin ( x sinh t ) sinh ( ν t ) d t , | ν | < 1 , x > 0 .
19: 4.45 Methods of Computation
Hyperbolic and Inverse Hyperbolic Functions
The hyperbolic functions can be computed directly from the definitions (4.28.1)–(4.28.7). The inverses arcsinh , arccosh , and arctanh can be computed from the logarithmic forms given in §4.37(iv), with real arguments. For arccsch , arcsech , and arccoth we have (4.37.7)–(4.37.9). … Similarly for the hyperbolic and inverse hyperbolic functions; compare (4.28.1)–(4.28.7), §4.37(iv), and (4.37.7)–(4.37.9). …
20: 19.7 Connection Formulas
With sinh ϕ = tan ψ , … The first of the three relations maps each circular region onto itself and each hyperbolic region onto the other; in particular, it gives the Cauchy principal value of Π ( ϕ , α 2 , k ) when α 2 > csc 2 ϕ (see (19.6.5) for the complete case). Let c = csc 2 ϕ α 2 . … The second relation maps each hyperbolic region onto itself and each circular region onto the other: … The third relation (missing from the literature of Legendre’s integrals) maps each circular region onto the other and each hyperbolic region onto the other: …