About the Project

hyperbolic%20analog

AdvancedHelp

(0.002 seconds)

11—20 of 269 matching pages

11: 4.41 Sums
§4.41 Sums
For sums of hyperbolic functions see Gradshteyn and Ryzhik (2000, Chapter 1), Hansen (1975, §43), Prudnikov et al. (1986a, §5.3), and Zucker (1979).
12: 4.34 Derivatives and Differential Equations
§4.34 Derivatives and Differential Equations
4.34.4 d d z csch z = csch z coth z ,
4.34.5 d d z sech z = sech z tanh z ,
With a 0 , the general solutions of the differential equations …
13: Bibliography M
  • S. C. Milne (1985a) A q -analog of the F 4 5 ( 1 ) summation theorem for hypergeometric series well-poised in 𝑆𝑈 ( n ) . Adv. in Math. 57 (1), pp. 14–33.
  • S. C. Milne (1985d) A q -analog of hypergeometric series well-poised in 𝑆𝑈 ( n ) and invariant G -functions. Adv. in Math. 58 (1), pp. 1–60.
  • S. C. Milne (1988) A q -analog of the Gauss summation theorem for hypergeometric series in U ( n ) . Adv. in Math. 72 (1), pp. 59–131.
  • S. C. Milne (1994) A q -analog of a Whipple’s transformation for hypergeometric series in U ( n ) . Adv. Math. 108 (1), pp. 1–76.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 14: 20.11 Generalizations and Analogs
    §20.11 Generalizations and Analogs
    It is a discrete analog of theta functions. If both m , n are positive, then G ( m , n ) allows inversion of its arguments as a modular transformation (compare (23.15.3) and (23.15.4)): …This is the discrete analog of the Poisson identity (§1.8(iv)). …
    15: 4.40 Integrals
    §4.40 Integrals
    §4.40(ii) Indefinite Integrals
    §4.40(iii) Definite Integrals
    §4.40(iv) Inverse Hyperbolic Functions
    Extensive compendia of indefinite and definite integrals of hyperbolic functions include Apelblat (1983, pp. 96–109), Bierens de Haan (1939), Gröbner and Hofreiter (1949, pp. 139–160), Gröbner and Hofreiter (1950, pp. 160–167), Gradshteyn and Ryzhik (2000, Chapters 2–4), and Prudnikov et al. (1986a, §§1.4, 1.8, 2.4, 2.8).
    16: 20.10 Integrals
    20.10.4 0 e s t θ 1 ( β π 2 | i π t 2 ) d t = 0 e s t θ 2 ( ( 1 + β ) π 2 | i π t 2 ) d t = s sinh ( β s ) sech ( s ) ,
    20.10.5 0 e s t θ 3 ( ( 1 + β ) π 2 | i π t 2 ) d t = 0 e s t θ 4 ( β π 2 | i π t 2 ) d t = s cosh ( β s ) csch ( s ) .
    17: 4.36 Infinite Products and Partial Fractions
    §4.36 Infinite Products and Partial Fractions
    4.36.1 sinh z = z n = 1 ( 1 + z 2 n 2 π 2 ) ,
    4.36.2 cosh z = n = 1 ( 1 + 4 z 2 ( 2 n 1 ) 2 π 2 ) .
    4.36.3 coth z = 1 z + 2 z n = 1 1 z 2 + n 2 π 2 ,
    4.36.4 csch 2 z = n = 1 ( z n π i ) 2 ,
    18: 4.33 Maclaurin Series and Laurent Series
    §4.33 Maclaurin Series and Laurent Series
    4.33.1 sinh z = z + z 3 3 ! + z 5 5 ! + ,
    4.33.2 cosh z = 1 + z 2 2 ! + z 4 4 ! + .
    4.33.3 tanh z = z z 3 3 + 2 15 z 5 17 315 z 7 + + 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π .
    19: 4.47 Approximations
    §4.47 Approximations
    §4.47(i) Chebyshev-Series Expansions
    Clenshaw (1962) and Luke (1975, Chapter 3) give 20D coefficients for ln , exp , sin , cos , tan , cot , arcsin , arctan , arcsinh . … Hart et al. (1968) give ln , exp , sin , cos , tan , cot , arcsin , arccos , arctan , sinh , cosh , tanh , arcsinh , arccosh . … Luke (1975, Chapter 3) supplies real and complex approximations for ln , exp , sin , cos , tan , arctan , arcsinh . …
    20: 36.3 Visualizations of Canonical Integrals
    Figure 36.3.9: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 0 ) | .
    Figure 36.3.10: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 1 ) | .
    Figure 36.3.11: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 2 ) | .
    Figure 36.3.12: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 3 ) | .
    Figure 36.3.18: Phase of hyperbolic umbilic canonical integral ph Ψ ( H ) ( x , y , 0 ) .