About the Project

generalized%20hypergeometric%20function%200F2

AdvancedHelp

(0.006 seconds)

11—20 of 976 matching pages

11: 19.16 Definitions
§19.16(ii) R a ( 𝐛 ; 𝐳 )
All elliptic integrals of the form (19.2.3) and many multiple integrals, including (19.23.6) and (19.23.6_5), are special cases of a multivariate hypergeometric functionFor generalizations and further information, especially representation of the R -function as a Dirichlet average, see Carlson (1977b).
§19.16(iii) Various Cases of R a ( 𝐛 ; 𝐳 )
12: 19.2 Definitions
§19.2(i) General Elliptic Integrals
Let s 2 ( t ) be a cubic or quartic polynomial in t with simple zeros, and let r ( s , t ) be a rational function of s and t containing at least one odd power of s . …
§19.2(iv) A Related Function: R C ( x , y )
In (19.2.18)–(19.2.22) the inverse trigonometric and hyperbolic functions assume their principal values (§§4.23(ii) and 4.37(ii)). When x and y are positive, R C ( x , y ) is an inverse circular function if x < y and an inverse hyperbolic function (or logarithm) if x > y : …
13: 14.19 Toroidal (or Ring) Functions
§14.19 Toroidal (or Ring) Functions
§14.19(i) Introduction
§14.19(ii) Hypergeometric Representations
With 𝐅 as in §14.3 and ξ > 0 , …
§14.19(v) Whipple’s Formula for Toroidal Functions
14: 9.1 Special Notation
(For other notation see Notation for the Special Functions.)
k nonnegative integer, except in §9.9(iii).
The main functions treated in this chapter are the Airy functions Ai ( z ) and Bi ( z ) , and the Scorer functions Gi ( z ) and Hi ( z ) (also known as inhomogeneous Airy functions). Other notations that have been used are as follows: Ai ( x ) and Bi ( x ) for Ai ( x ) and Bi ( x ) (Jeffreys (1928), later changed to Ai ( x ) and Bi ( x ) ); U ( x ) = π Bi ( x ) , V ( x ) = π Ai ( x ) (Fock (1945)); A ( x ) = 3 1 / 3 π Ai ( 3 1 / 3 x ) (Szegő (1967, §1.81)); e 0 ( x ) = π Hi ( x ) , e ~ 0 ( x ) = π Gi ( x ) (Tumarkin (1959)).
15: 16.13 Appell Functions
§16.13 Appell Functions
The following four functions of two real or complex variables x and y cannot be expressed as a product of two F 1 2 functions, in general, but they satisfy partial differential equations that resemble the hypergeometric differential equation (15.10.1):
16.13.1 F 1 ( α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m ( β ) n ( γ ) m + n m ! n ! x m y n , max ( | x | , | y | ) < 1 ,
16.13.4 F 4 ( α , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m + n ( γ ) m ( γ ) n m ! n ! x m y n , | x | + | y | < 1 .
16: 23.15 Definitions
§23.15 Definitions
§23.15(i) General Modular Functions
Elliptic Modular Function
Dedekind’s Eta Function (or Dedekind Modular Function)
17: 14.20 Conical (or Mehler) Functions
§14.20 Conical (or Mehler) Functions
Lastly, for the range 1 < x < , P 1 2 + i τ μ ( x ) is a real-valued solution of (14.20.1); in terms of Q 1 2 ± i τ μ ( x ) (which are complex-valued in general): …
§14.20(ii) Graphics
§14.20(vi) Generalized Mehler–Fock Transformation
18: 11.9 Lommel Functions
§11.9 Lommel Functions
can be regarded as a generalization of (11.2.7). Provided that μ ± ν 1 , 3 , 5 , , (11.9.1) has the general solution …
19: 20.2 Definitions and Periodic Properties
§20.2(i) Fourier Series
§20.2(ii) Periodicity and Quasi-Periodicity
The theta functions are quasi-periodic on the lattice: …
§20.2(iii) Translation of the Argument by Half-Periods
§20.2(iv) z -Zeros
20: 9.12 Scorer Functions
§9.12 Scorer Functions
The general solution is given by …where …
Functions and Derivatives