About the Project

fundamental%20theorem%20of%20calculus

AdvancedHelp

(0.002 seconds)

11—20 of 221 matching pages

11: 28 Mathieu Functions and Hill’s Equation
12: Bibliography C
  • L. Carlitz (1961b) The Staudt-Clausen theorem. Math. Mag. 34, pp. 131–146.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • H. S. Cohl (2013a) Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solution of the polyharmonic equation and polyspherical addition theorems. SIGMA Symmetry Integrability Geom. Methods Appl. 9, pp. Paper 042, 26.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 13: 28.2 Definitions and Basic Properties
    (28.2.1) possesses a fundamental pair of solutions w I ( z ; a , q ) , w II ( z ; a , q ) called basic solutions with …
    28.2.6 𝒲 { w I , w II } = 1 ,
    §28.2(iii) Floquet’s Theorem and the Characteristic Exponents
    If q 0 , then for a given value of ν the corresponding Floquet solution is unique, except for an arbitrary constant factor (Theorem of Ince; see also 28.5(i)). …
    14: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 15: 23 Weierstrass Elliptic and Modular
    Functions
    16: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • F. C. Smith (1939b) Relations among the fundamental solutions of the generalized hypergeometric equation when p = q + 1 . II. Logarithmic cases. Bull. Amer. Math. Soc. 45 (12), pp. 927–935.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • 17: 36 Integrals with Coalescing Saddles
    18: Gergő Nemes
    As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
    19: Wolter Groenevelt
    As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
    20: 33.24 Tables
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ( η , ρ ) , G 0 ( η , ρ ) , F 0 ( η , ρ ) , and G 0 ( η , ρ ) for η = 0.5 ( .5 ) 20 and ρ = 1 ( 1 ) 20 , 5S; C 0 ( η ) for η = 0 ( .05 ) 3 , 6S.