About the Project

functions Fℓ(η,ρ),Gℓ(η,ρ),H±ℓ(η,ρ)

AdvancedHelp

(0.015 seconds)

21—30 of 236 matching pages

21: 27.4 Euler Products and Dirichlet Series
The Riemann zeta function is the prototype of series of the form
27.4.4 F ( s ) = n = 1 f ( n ) n s ,
The function F ( s ) is a generating function, or more precisely, a Dirichlet generating function, for the coefficients. …
22: 33.12 Asymptotic Expansions for Large η
33.12.2 F 0 ( η , ρ ) G 0 ( η , ρ ) π 1 / 2 ( 2 η ) 1 / 6 { Ai ( x ) Bi ( x ) ( 1 + B 1 μ + B 2 μ 2 + ) + Ai ( x ) Bi ( x ) ( A 1 μ + A 2 μ 2 + ) } ,
33.12.3 F 0 ( η , ρ ) G 0 ( η , ρ ) π 1 / 2 ( 2 η ) 1 / 6 { Ai ( x ) Bi ( x ) ( B 1 + x A 1 μ + B 2 + x A 2 μ 2 + ) + Ai ( x ) Bi ( x ) ( B 1 + A 1 μ + B 2 + A 2 μ 2 + ) } ,
33.12.6 F 0 ( η , 2 η ) 3 1 / 2 G 0 ( η , 2 η ) Γ ( 1 3 ) ω 1 / 2 2 π ( 1 2 35 Γ ( 2 3 ) Γ ( 1 3 ) 1 ω 4 8 2025 1 ω 6 5792 46 06875 Γ ( 2 3 ) Γ ( 1 3 ) 1 ω 10 ) ,
33.12.7 F 0 ( η , 2 η ) 3 1 / 2 G 0 ( η , 2 η ) Γ ( 2 3 ) 2 π ω 1 / 2 ( ± 1 + 1 15 Γ ( 1 3 ) Γ ( 2 3 ) 1 ω 2 ± 2 14175 1 ω 6 + 1436 23 38875 Γ ( 1 3 ) Γ ( 2 3 ) 1 ω 8 ± ) ,
23: 33.1 Special Notation
The main functions treated in this chapter are first the Coulomb radial functions F ( η , ρ ) , G ( η , ρ ) , H ± ( η , ρ ) (Sommerfeld (1928)), which are used in the case of repulsive Coulomb interactions, and secondly the functions f ( ϵ , ; r ) , h ( ϵ , ; r ) , s ( ϵ , ; r ) , c ( ϵ , ; r ) (Seaton (1982, 2002a)), which are used in the case of attractive Coulomb interactions. …
24: 8.27 Approximations
  • DiDonato (1978) gives a simple approximation for the function F ( p , x ) = x p e x 2 / 2 x e t 2 / 2 t p d t (which is related to the incomplete gamma function by a change of variables) for real p and large positive x . This takes the form F ( p , x ) = 4 x / h ( p , x ) , approximately, where h ( p , x ) = 3 ( x 2 p ) + ( x 2 p ) 2 + 8 ( x 2 + p ) and is shown to produce an absolute error O ( x 7 ) as x .

  • 25: 10.59 Integrals
    §10.59 Integrals
    10.59.1 e i b t 𝗃 n ( t ) d t = { π i n P n ( b ) , 1 < b < 1 , 1 2 π ( ± i ) n , b = ± 1 , 0 , ± b > 1 ,
    For an integral representation of the Dirac delta in terms of a product of spherical Bessel functions of the first kind see §1.17(ii), and for a generalization see Maximon (1991). …
    26: 16.4 Argument Unity
    The function F q q + 1 ( 𝐚 ; 𝐛 ; z ) is well-poised if … The function F q q + 1 with argument unity and general values of the parameters is discussed in Bühring (1992). … For generalizations involving F r + 2 r + 3 functions see Kim et al. (2013). … The function F 2 3 ( a , b , c ; d , e ; 1 ) is analytic in the parameters a , b , c , d , e when its series expansion converges and the bottom parameters are not negative integers or zero. … For continued fractions for ratios of F 2 3 functions with argument unity, see Cuyt et al. (2008, pp. 315–317). …
    27: 1.10 Functions of a Complex Variable
    Let F ( z ) be a multivalued function and D be a domain. … The function F ( z ) = ( 1 z ) α ( 1 + z ) β is many-valued with branch points at ± 1 . …
    1.10.23 F ( z ) = n = 1 a n ( z ) , z D ,
    1.10.24 F ( z ) F ( z ) = n = 1 a n ( z ) a n ( z ) .
    Then F ( x ; z ) is the generating function for the functions p n ( x ) , which will automatically have an integral representation …
    28: 16.16 Transformations of Variables
    16.16.1 F 1 ( α ; β , β ; β + β ; x , y ) = ( 1 y ) α F 1 2 ( α , β β + β ; x y 1 y ) ,
    16.16.2 F 2 ( α ; β , β ; γ , β ; x , y ) = ( 1 y ) α F 1 2 ( α , β γ ; x 1 y ) ,
    16.16.3 F 2 ( α ; β , β ; γ , α ; x , y ) = ( 1 y ) β F 1 ( β ; α β , β ; γ ; x , x 1 y ) ,
    16.16.5 F 3 ( α , γ α ; β , γ β ; γ ; x , y ) = ( 1 y ) α + β γ F 1 2 ( α , β γ ; x + y x y ) ,
    16.16.7 F 4 ( α , β ; γ , γ ; x ( 1 y ) , y ( 1 x ) ) = k = 0 ( α ) k ( β ) k ( α + β γ γ + 1 ) k ( γ ) k ( γ ) k k ! x k y k F 1 2 ( α + k , β + k γ + k ; x ) F 1 2 ( α + k , β + k γ + k ; y ) ;
    29: 10.39 Relations to Other Functions
    10.39.5 I ν ( z ) = ( 1 2 z ) ν e ± z Γ ( ν + 1 ) M ( ν + 1 2 , 2 ν + 1 , 2 z ) ,
    10.39.10 I ν ( z ) = ( 1 2 z ) ν lim 𝐅 ( λ , μ ; ν + 1 ; z 2 / ( 4 λ μ ) ) ,
    For the functions F 1 0 and 𝐅 see (16.2.1) and §15.2(i).
    30: 33.8 Continued Fractions
    33.8.1 F F = S + 1 R + 1 2 T + 1 R + 2 2 T + 2 .