About the Project

for derivatives

AdvancedHelp

(0.002 seconds)

31—40 of 277 matching pages

31: 28.32 Mathematical Applications
β–Ί β–Ί
28.32.3 2 V ξ 2 + 2 V η 2 + 1 2 ⁒ c 2 ⁒ k 2 ⁒ ( cosh ⁑ ( 2 ⁒ ξ ) cos ⁑ ( 2 ⁒ η ) ) ⁒ V = 0 .
β–Ί
28.32.4 2 K z 2 2 K ΢ 2 = 2 ⁒ q ⁒ ( cos ⁑ ( 2 ⁒ z ) cos ⁑ ( 2 ⁒ ΢ ) ) ⁒ K .
β–Ί
28.32.5 K ⁑ ( z , ΢ ) ⁒ d u ⁑ ( ΢ ) d ΢ u ⁑ ( ΢ ) ⁒ K ⁑ ( z , ΢ ) ΢
32: 14.6 Integer Order
β–Ί
14.6.1 𝖯 Ξ½ m ⁑ ( x ) = ( 1 ) m ⁒ ( 1 x 2 ) m / 2 ⁒ d m 𝖯 Ξ½ ⁑ ( x ) d x m ,
β–Ί
14.6.2 𝖰 Ξ½ m ⁑ ( x ) = ( 1 ) m ⁒ ( 1 x 2 ) m / 2 ⁒ d m 𝖰 Ξ½ ⁑ ( x ) d x m .
β–Ί β–Ί β–Ί
33: 8.8 Recurrence Relations and Derivatives
§8.8 Recurrence Relations and Derivatives
β–Ί
8.8.13 d d z ⁑ Ξ³ ⁑ ( a , z ) = d d z ⁑ Ξ“ ⁑ ( a , z ) = z a 1 ⁒ e z ,
β–Ί
8.8.15 d n d z n ⁑ ( z a ⁒ γ ⁑ ( a , z ) ) = ( 1 ) n ⁒ z a n ⁒ γ ⁑ ( a + n , z ) ,
β–Ί
8.8.16 d n d z n ⁑ ( z a ⁒ Ξ“ ⁑ ( a , z ) ) = ( 1 ) n ⁒ z a n ⁒ Ξ“ ⁑ ( a + n , z ) ,
β–Ί
8.8.17 d n d z n ⁑ ( e z ⁒ γ ⁑ ( a , z ) ) = ( 1 ) n ⁒ ( 1 a ) n ⁒ e z ⁒ γ ⁑ ( a n , z ) ,
34: 31.10 Integral Equations and Representations
β–Ί
31.10.4 π’Ÿ z = z ⁒ ( z 1 ) ⁒ ( z a ) ⁒ ( 2 / z 2 ) + ( Ξ³ ⁒ ( z 1 ) ⁒ ( z a ) + Ξ΄ ⁒ z ⁒ ( z a ) + Ο΅ ⁒ z ⁒ ( z 1 ) ) ⁒ ( / z ) + Ξ± ⁒ Ξ² ⁒ z .
β–Ί
31.10.5 p ⁑ ( t ) ⁒ ( 𝒦 t ⁒ w ⁑ ( t ) 𝒦 ⁒ d w ⁑ ( t ) d t ) | C = 0 ,
β–Ί
31.10.15 p ⁑ ( t ) ⁒ ( 𝒦 t ⁒ w ⁒ ( t ) 𝒦 ⁒ d w ⁒ ( t ) d t ) | C 1 = 0 ,
β–Ί
31.10.16 p ⁑ ( s ) ⁒ ( 𝒦 s ⁒ w ⁒ ( s ) 𝒦 ⁒ d w ⁒ ( s ) d s ) | C 2 = 0 ,
β–Ί
31.10.18 2 𝒦 u 2 + 2 𝒦 v 2 + 2 𝒦 w 2 + 2 ⁒ Ξ³ 1 u ⁒ 𝒦 u + 2 ⁒ Ξ΄ 1 v ⁒ 𝒦 v + 2 ⁒ Ο΅ 1 w ⁒ 𝒦 w = 0 .
35: 1.6 Vectors and Vector-Valued Functions
β–Ί
1.6.19 = 𝐒 ⁒ x + 𝐣 ⁒ y + 𝐀 ⁒ z .
β–Ί
1.6.20 grad ⁑ f = f = f x ⁒ 𝐒 + f y ⁒ 𝐣 + f z ⁒ 𝐀 .
β–Ί
1.6.21 div ⁑ 𝐅 = 𝐅 = F 1 x + F 2 y + F 3 z .
β–Ί
1.6.22 curl ⁑ 𝐅 = × π… = | 𝐒 𝐣 𝐀 x y z F 1 F 2 F 3 | = ( F 3 y F 2 z ) ⁒ 𝐒 + ( F 1 z F 3 x ) ⁒ 𝐣 + ( F 2 x F 1 y ) ⁒ 𝐀 .
β–Ίwhere g / n = g 𝐧 is the derivative of g normal to the surface outwards from V and 𝐧 is the unit outer normal vector. …
36: 14.11 Derivatives with Respect to Degree or Order
§14.11 Derivatives with Respect to Degree or Order
β–Ί
14.11.1 Ξ½ ⁑ 𝖯 Ξ½ ΞΌ ⁑ ( x ) = Ο€ ⁒ cot ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ 𝖯 Ξ½ ΞΌ ⁑ ( x ) 1 Ο€ ⁒ 𝖠 Ξ½ ΞΌ ⁑ ( x ) ,
β–Ί
14.11.2 Ξ½ ⁑ 𝖰 Ξ½ ΞΌ ⁑ ( x ) = 1 2 ⁒ Ο€ 2 ⁒ 𝖯 Ξ½ ΞΌ ⁑ ( x ) + Ο€ ⁒ sin ⁑ ( ΞΌ ⁒ Ο€ ) sin ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ sin ⁑ ( ( Ξ½ + ΞΌ ) ⁒ Ο€ ) ⁒ 𝖰 Ξ½ ΞΌ ⁑ ( x ) 1 2 ⁒ cot ⁑ ( ( Ξ½ + ΞΌ ) ⁒ Ο€ ) ⁒ 𝖠 Ξ½ ΞΌ ⁑ ( x ) + 1 2 ⁒ csc ⁑ ( ( Ξ½ + ΞΌ ) ⁒ Ο€ ) ⁒ 𝖠 Ξ½ ΞΌ ⁑ ( x ) ,
β–Ί β–Ί
37: 13.15 Recurrence Relations and Derivatives
§13.15 Recurrence Relations and Derivatives
β–Ί
§13.15(ii) Differentiation Formulas
β–Ί
13.15.15 d n d z n ⁑ ( e 1 2 ⁒ z ⁒ z μ 1 2 ⁒ M κ , μ ⁑ ( z ) ) = ( 1 ) n ⁒ ( 2 ⁒ μ ) n ⁒ e 1 2 ⁒ z ⁒ z μ 1 2 ⁒ ( n + 1 ) ⁒ M κ 1 2 ⁒ n , μ 1 2 ⁒ n ⁑ ( z ) ,
β–Ί
13.15.16 d n d z n ⁑ ( e 1 2 ⁒ z ⁒ z μ 1 2 ⁒ M κ , μ ⁑ ( z ) ) = ( 1 2 + μ κ ) n ( 1 + 2 ⁒ μ ) n ⁒ e 1 2 ⁒ z ⁒ z μ 1 2 ⁒ ( n + 1 ) ⁒ M κ 1 2 ⁒ n , μ + 1 2 ⁒ n ⁑ ( z ) ,
β–Ί
13.15.26 ( z ⁒ d d z ⁑ z ) n ⁒ ( e 1 2 ⁒ z ⁒ z κ 1 ⁒ W κ , μ ⁑ ( z ) ) = ( 1 ) n ⁒ e 1 2 ⁒ z ⁒ z κ + n 1 ⁒ W κ + n , μ ⁑ ( z ) .
38: 20.13 Physical Applications
β–Ί
20.13.1 ΞΈ ⁑ ( z | Ο„ ) / Ο„ = ΞΊ ⁒ 2 ΞΈ ⁑ ( z | Ο„ ) / z 2 ,
β–Ί
20.13.2 θ / t = α ⁒ 2 θ / z 2 ,
39: 23.21 Physical Applications
β–Ί
23.21.2 ( η ΢ ) ⁒ ( ΢ ξ ) ⁒ ( ξ η ) ⁒ 2 = ( ΢ η ) ⁒ f ⁑ ( ξ ) ⁒ f ⁑ ( ξ ) ⁒ ξ + ( ξ ΢ ) ⁒ f ⁑ ( η ) ⁒ f ⁑ ( η ) ⁒ η + ( η ξ ) ⁒ f ⁑ ( ΢ ) ⁒ f ⁑ ( ΢ ) ⁒ ΢ ,
β–Ί
23.21.5 ( ⁑ ( v ) ⁑ ( w ) ) ⁒ ( ⁑ ( w ) ⁑ ( u ) ) ⁒ ( ⁑ ( u ) ⁑ ( v ) ) ⁒ 2 = ( ⁑ ( w ) ⁑ ( v ) ) ⁒ 2 u 2 + ( ⁑ ( u ) ⁑ ( w ) ) ⁒ 2 v 2 + ( ⁑ ( v ) ⁑ ( u ) ) ⁒ 2 w 2 .
40: 10.29 Recurrence Relations and Derivatives
§10.29 Recurrence Relations and Derivatives
β–Ί
§10.29(ii) Derivatives
β–Ί
( 1 z ⁒ d d z ) k ⁑ ( z Ξ½ ⁒ 𝒡 Ξ½ ⁑ ( z ) ) = z Ξ½ k ⁒ 𝒡 Ξ½ k ⁑ ( z ) ,
β–Ί
( 1 z ⁒ d d z ) k ⁑ ( z Ξ½ ⁒ 𝒡 Ξ½ ⁑ ( z ) ) = z Ξ½ k ⁒ 𝒡 Ξ½ + k ⁑ ( z ) .