About the Project

for confluent hypergeometric functions

AdvancedHelp

(0.016 seconds)

31—40 of 95 matching pages

31: 33.14 Definitions and Basic Properties
§33.14(ii) Regular Solution f ( ϵ , ; r )
33.14.4 f ( ϵ , ; r ) = κ + 1 M κ , + 1 2 ( 2 r / κ ) / ( 2 + 1 ) ! ,
33.14.5 f ( ϵ , ; r ) = ( 2 r ) + 1 e r / κ M ( + 1 κ , 2 + 2 , 2 r / κ ) / ( 2 + 1 ) ! ,
For nonzero values of ϵ and r the function h ( ϵ , ; r ) is defined by
33.14.7 h ( ϵ , ; r ) = Γ ( + 1 κ ) π κ ( W κ , + 1 2 ( 2 r / κ ) + ( 1 ) S ( ϵ , r ) Γ ( + 1 + κ ) 2 ( 2 + 1 ) ! M κ , + 1 2 ( 2 r / κ ) ) ,
32: 13.21 Uniform Asymptotic Approximations for Large κ
13.21.1 M κ , μ ( x ) = x Γ ( 2 μ + 1 ) κ μ ( J 2 μ ( 2 x κ ) + env J 2 μ ( 2 x κ ) O ( κ 1 2 ) ) ,
13.21.6 M κ , μ ( 4 κ x ) = 2 Γ ( 2 μ + 1 ) κ μ 1 2 ( x ζ 1 + x ) 1 4 I 2 μ ( 4 κ ζ 1 2 ) ( 1 + O ( κ 1 ) ) ,
For a uniform asymptotic expansion in terms of Airy functions for W κ , μ ( 4 κ x ) when κ is large and positive, μ is real with | μ | bounded, and x [ δ , ) see Olver (1997b, Chapter 11, Ex. 7.3). …
33: 13.13 Addition and Multiplication Theorems
§13.13(i) Addition Theorems for M ( a , b , z )
The function M ( a , b , x + y ) has the following expansions: … The function U ( a , b , x + y ) has the following expansions: …
13.13.10 e y n = 0 ( y ) n n ! U ( a , b + n , x ) , | y | < | x | ,
§13.13(iii) Multiplication Theorems for M ( a , b , z ) and U ( a , b , z )
34: 13.24 Series
For expansions of arbitrary functions in series of M κ , μ ( z ) functions see Schäfke (1961b). …
13.24.1 M κ , μ ( z ) = Γ ( κ + μ ) 2 2 κ + 2 μ z 1 2 κ s = 0 ( 1 ) s ( 2 κ + 2 μ ) s ( 2 κ ) s ( 1 + 2 μ ) s s ! ( κ + μ + s ) I κ + μ + s ( 1 2 z ) , 2 μ , κ + μ 1 , 2 , 3 , ,
13.24.2 1 Γ ( 1 + 2 μ ) M κ , μ ( z ) = 2 2 μ z μ + 1 2 s = 0 p s ( μ ) ( z ) ( 2 κ z ) 2 μ s J 2 μ + s ( 2 κ z ) ,
35: 18.34 Bessel Polynomials
§18.34(i) Definitions and Recurrence Relation
For the confluent hypergeometric function F 1 1 and the generalized hypergeometric function F 0 2 , the Laguerre polynomial L n ( α ) and the Whittaker function W κ , μ see §16.2(ii), §16.2(iv), (18.5.12), and (13.14.3), respectively.
18.34.1 y n ( x ; a ) = F 0 2 ( n , n + a 1 ; x 2 ) = ( n + a 1 ) n ( x 2 ) n F 1 1 ( n 2 n a + 2 ; 2 x ) = n ! ( 1 2 x ) n L n ( 1 a 2 n ) ( 2 x 1 ) = ( 1 2 x ) 1 1 2 a e 1 / x W 1 1 2 a , 1 2 ( a 1 ) + n ( 2 x 1 ) .
18.34.7_1 ϕ n ( x ; λ ) = e λ e x ( 2 λ e x ) λ 1 2 y n ( λ 1 e x ; 2 2 λ ) / n ! = ( 1 ) n e λ e x ( 2 λ e x ) λ n 1 2 L n ( 2 λ 2 n 1 ) ( 2 λ e x ) = ( 2 λ ) 1 2 e x / 2 W λ , n + 1 2 λ ( 2 λ e x ) / n ! , n = 0 , 1 , , N = λ 3 2 , λ > 1 2 ,
36: 12.7 Relations to Other Functions
§12.7(iv) Confluent Hypergeometric Functions
12.7.12 u 1 ( a , z ) = e 1 4 z 2 M ( 1 2 a + 1 4 , 1 2 , 1 2 z 2 ) = e 1 4 z 2 M ( 1 2 a + 1 4 , 1 2 , 1 2 z 2 ) ,
12.7.13 u 2 ( a , z ) = z e 1 4 z 2 M ( 1 2 a + 3 4 , 3 2 , 1 2 z 2 ) = z e 1 4 z 2 M ( 1 2 a + 3 4 , 3 2 , 1 2 z 2 ) .
12.7.14 U ( a , z ) = 2 1 4 1 2 a e 1 4 z 2 U ( 1 2 a + 1 4 , 1 2 , 1 2 z 2 ) = 2 3 4 1 2 a z e 1 4 z 2 U ( 1 2 a + 3 4 , 3 2 , 1 2 z 2 ) = 2 1 2 a z 1 2 W 1 2 a , ± 1 4 ( 1 2 z 2 ) .
37: 7.18 Repeated Integrals of the Complementary Error Function
Confluent Hypergeometric Functions
7.18.9 i n erfc ( z ) = e z 2 ( 1 2 n Γ ( 1 2 n + 1 ) M ( 1 2 n + 1 2 , 1 2 , z 2 ) z 2 n 1 Γ ( 1 2 n + 1 2 ) M ( 1 2 n + 1 , 3 2 , z 2 ) ) ,
The confluent hypergeometric function on the right-hand side of (7.18.10) is multivalued and in the sectors 1 2 π < | ph z | < π one has to use the analytic continuation formula (13.2.12). …
38: 13.15 Recurrence Relations and Derivatives
13.15.4 2 μ M κ 1 2 , μ 1 2 ( z ) 2 μ M κ + 1 2 , μ 1 2 ( z ) z M κ , μ ( z ) = 0 ,
13.15.8 W κ + 1 2 , μ + 1 2 ( z ) z W κ , μ ( z ) + ( κ μ 1 2 ) W κ 1 2 , μ + 1 2 ( z ) = 0 ,
13.15.9 W κ + 1 2 , μ 1 2 ( z ) z W κ , μ ( z ) + ( κ + μ 1 2 ) W κ 1 2 , μ 1 2 ( z ) = 0 ,
13.15.10 2 μ W κ , μ ( z ) z W κ + 1 2 , μ + 1 2 ( z ) + z W κ + 1 2 , μ 1 2 ( z ) = 0 ,
13.15.11 W κ + 1 , μ ( z ) + ( 2 κ z ) W κ , μ ( z ) + ( κ μ 1 2 ) ( κ + μ 1 2 ) W κ 1 , μ ( z ) = 0 ,
39: 9.6 Relations to Other Functions
§9.6(iii) Airy Functions as Confluent Hypergeometric Functions
9.6.21 Ai ( z ) = 1 2 π 1 / 2 z 1 / 4 W 0 , 1 / 3 ( 2 ζ ) = 3 1 / 6 π 1 / 2 ζ 2 / 3 e ζ U ( 5 6 , 5 3 , 2 ζ ) ,
9.6.22 Ai ( z ) = 1 2 π 1 / 2 z 1 / 4 W 0 , 2 / 3 ( 2 ζ ) = 3 1 / 6 π 1 / 2 ζ 4 / 3 e ζ U ( 7 6 , 7 3 , 2 ζ ) ,
9.6.23 Bi ( z ) = 1 2 1 / 3 Γ ( 2 3 ) z 1 / 4 M 0 , 1 / 3 ( 2 ζ ) + 3 2 5 / 3 Γ ( 1 3 ) z 1 / 4 M 0 , 1 / 3 ( 2 ζ ) ,
9.6.26 Bi ( z ) = 3 1 / 6 Γ ( 1 3 ) e ζ F 1 1 ( 1 6 ; 1 3 ; 2 ζ ) + 3 7 / 6 2 7 / 3 Γ ( 2 3 ) ζ 4 / 3 e ζ F 1 1 ( 7 6 ; 7 3 ; 2 ζ ) .
40: 13.12 Products
13.12.1 M ( a , b , z ) M ( a , b , z ) + a ( a b ) z 2 b 2 ( 1 b 2 ) M ( 1 + a , 2 + b , z ) M ( 1 a , 2 b , z ) = 1 .