About the Project

for%20ratios

AdvancedHelp

(0.002 seconds)

21—30 of 33 matching pages

21: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • S. V. Aksenov, M. A. Savageau, U. D. Jentschura, J. Becher, G. Soff, and P. J. Mohr (2003) Application of the combined nonlinear-condensation transformation to problems in statistical analysis and theoretical physics. Comput. Phys. Comm. 150 (1), pp. 1–20.
  • D. E. Amos (1974) Computation of modified Bessel functions and their ratios. Math. Comp. 28 (125), pp. 239–251.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • 22: 26.5 Lattice Paths: Catalan Numbers
    Table 26.5.1: Catalan numbers.
    n C ( n ) n C ( n ) n C ( n )
    6 132 13 7 42900 20 65641 20420
    23: 15.10 Hypergeometric Differential Equation
    The ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are: …
    15.10.19 w 5 ( z ) = Γ ( 1 c ) Γ ( a b + 1 ) Γ ( a c + 1 ) Γ ( 1 b ) w 1 ( z ) + e ( c 1 ) π i Γ ( c 1 ) Γ ( a b + 1 ) Γ ( a ) Γ ( c b ) w 2 ( z ) ,
    15.10.20 w 6 ( z ) = Γ ( 1 c ) Γ ( b a + 1 ) Γ ( b c + 1 ) Γ ( 1 a ) w 1 ( z ) + e ( c 1 ) π i Γ ( c 1 ) Γ ( b a + 1 ) Γ ( b ) Γ ( c a ) w 2 ( z ) .
    15.10.26 w 2 ( z ) = e ( 1 c ) π i Γ ( 2 c ) Γ ( b a ) Γ ( 1 a ) Γ ( b c + 1 ) w 5 ( z ) + e ( 1 c ) π i Γ ( 2 c ) Γ ( a b ) Γ ( 1 b ) Γ ( a c + 1 ) w 6 ( z ) ,
    15.10.29 w 1 ( z ) = e b π i Γ ( c ) Γ ( a c + 1 ) Γ ( a + b c + 1 ) Γ ( c b ) w 3 ( z ) + e ( b c ) π i Γ ( c ) Γ ( a c + 1 ) Γ ( b ) Γ ( a b + 1 ) w 5 ( z ) ,
    24: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • 25: 1.11 Zeros of Polynomials
    Resolvent cubic is z 3 + 12 z 2 + 20 z + 9 = 0 with roots θ 1 = 1 , θ 2 = 1 2 ( 11 + 85 ) , θ 3 = 1 2 ( 11 85 ) , and θ 1 = 1 , θ 2 = 1 2 ( 17 + 5 ) , θ 3 = 1 2 ( 17 5 ) . …
    1.11.23 R n ( cos ( α + 2 k π n ) + i sin ( α + 2 k π n ) ) ,
    26: 12.10 Uniform Asymptotic Expansions for Large Parameter
    12.10.16 Γ ( 1 2 + z ) 2 π e z z z s = 0 γ s z s ;
    12.10.33 𝖠 s + 1 ( τ ) = 4 τ 2 ( τ + 1 ) 2 d d τ 𝖠 s ( τ ) 1 4 0 τ ( 20 u 2 + 20 u + 3 ) 𝖠 s ( u ) d u , s = 0 , 1 , 2 , ,
    𝖠 1 ( τ ) = 1 12 τ ( 20 τ 2 + 30 τ + 9 ) ,
    12.10.35 U ( 1 2 μ 2 , μ t 2 ) 2 π 1 2 μ 1 3 g ( μ ) ϕ ( ζ ) ( Ai ( μ 4 3 ζ ) s = 0 A s ( ζ ) μ 4 s + Ai ( μ 4 3 ζ ) μ 8 3 s = 0 B s ( ζ ) μ 4 s ) ,
    12.10.41 t = 1 + w 1 10 w 2 + 11 350 w 3 823 63000 w 4 + 1 50653 242 55000 w 5 + , | ζ | < ( 3 4 π ) 2 3 .
    27: 6.16 Mathematical Applications
    6.16.1 sin x + 1 3 sin ( 3 x ) + 1 5 sin ( 5 x ) + = { 1 4 π , 0 < x < π , 0 , x = 0 , 1 4 π , π < x < 0 .
    See accompanying text
    Figure 6.16.2: The logarithmic integral li ( x ) , together with vertical bars indicating the value of π ( x ) for x = 10 , 20 , , 1000 . Magnify
    28: 26.3 Lattice Paths: Binomial Coefficients
    Table 26.3.1: Binomial coefficients ( m n ) .
    m n
    6 1 6 15 20 15 6 1
    Table 26.3.2: Binomial coefficients ( m + n m ) for lattice paths.
    m n
    3 1 4 10 20 35 56 84 120 165
    26.3.12 ( 2 n n ) 4 n π n , n .
    29: 12.11 Zeros
    12.11.1 z a , s = e 3 4 π i 2 τ s ( 1 i a λ s 2 τ s + 2 a 2 λ s 2 8 a 2 λ s + 4 a 2 + 3 16 τ s 2 + O ( λ s 3 τ s 3 ) ) ,
    12.11.2 τ s = ( 2 s + 1 2 a ) π + i ln ( π 1 2 2 a 1 2 Γ ( 1 2 + a ) ) ,
    12.11.3 λ s = ln τ s 1 2 π i .
    12.11.9 u a , 1 2 1 2 μ ( 1 1.85575 708 μ 4 / 3 0.34438 34 μ 8 / 3 0.16871 5 μ 4 0.11414 μ 16 / 3 0.0808 μ 20 / 3 ) ,
    30: 20.11 Generalizations and Analogs
    20.11.1 G ( m , n ) = k = 0 n 1 e π i k 2 m / n ;
    20.11.2 1 n G ( m , n ) = 1 n k = 0 n 1 e π i k 2 m / n = e π i / 4 m j = 0 m 1 e π i j 2 n / m = e π i / 4 m G ( n , m ) .