About the Project

fold%20catastrophe

AdvancedHelp

(0.002 seconds)

11—20 of 113 matching pages

11: Bibliography N
β–Ί
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • β–Ί
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • β–Ί
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • β–Ί
  • J. F. Nye (2006) Dislocation lines in the hyperbolic umbilic diffraction catastrophe. Proc. Roy. Soc. Lond. Ser. A 462, pp. 2299–2313.
  • β–Ί
  • J. F. Nye (2007) Dislocation lines in the swallowtail diffraction catastrophe. Proc. Roy. Soc. Lond. Ser. A 463, pp. 343–355.
  • 12: Bibliography B
    β–Ί
  • M. V. Berry and C. J. Howls (1990) Stokes surfaces of diffraction catastrophes with codimension three. Nonlinearity 3 (2), pp. 281–291.
  • β–Ί
  • M. V. Berry and C. J. Howls (1994) Overlapping Stokes smoothings: Survival of the error function and canonical catastrophe integrals. Proc. Roy. Soc. London Ser. A 444, pp. 201–216.
  • β–Ί
  • M. V. Berry and C. J. Howls (2010) Axial and focal-plane diffraction catastrophe integrals. J. Phys. A 43 (37), pp. 375206, 13.
  • β–Ί
  • M. V. Berry, J. F. Nye, and F. J. Wright (1979) The elliptic umbilic diffraction catastrophe. Phil. Trans. Roy. Soc. Ser. A 291 (1382), pp. 453–484.
  • β–Ί
  • M. V. Berry and C. Upstill (1980) Catastrophe optics: Morphologies of caustics and their diffraction patterns. In Progress in Optics, E. Wolf (Ed.), Vol. 18, pp. 257–346.
  • 13: 36.14 Other Physical Applications
    β–ΊDiffraction catastrophes describe the (linear) wave amplitudes that smooth the geometrical caustic singularities and decorate them with interference patterns. … β–ΊDiffraction catastrophes describe the connection between ray optics and wave optics. … β–ΊDiffraction catastrophes describe the “semiclassical” connections between classical orbits and quantum wavefunctions, for integrable (non-chaotic) systems. …
    14: Bibliography
    β–Ί
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • β–Ί
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • β–Ί
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • β–Ί
  • V. I. Arnol’d (1986) Catastrophe Theory. 2nd edition, Springer-Verlag, Berlin.
  • β–Ί
  • V. I. Arnol’d (1992) Catastrophe Theory. 3rd edition, Springer-Verlag, Berlin.
  • 15: 8 Incomplete Gamma and Related
    Functions
    16: 28 Mathieu Functions and Hill’s Equation
    17: Bibliography F
    β–Ί
  • FDLIBM (free C library)
  • β–Ί
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • β–Ί
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • β–Ί
  • C. K. Frederickson and P. L. Marston (1992) Transverse cusp diffraction catastrophes produced by the reflection of ultrasonic tone bursts from a curved surface in water. J. Acoust. Soc. Amer. 92 (5), pp. 2869–2877.
  • β–Ί
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 18: 36.12 Uniform Approximation of Integrals
    β–ΊDefine a mapping u ⁑ ( t ; 𝐲 ) by relating f ⁑ ( u ; 𝐲 ) to the normal form (36.2.1) of Ξ¦ K ⁑ ( t ; 𝐱 ) in the following way: …with the K + 1 functions A ⁑ ( 𝐲 ) and 𝐱 ⁑ ( 𝐲 ) determined by correspondence of the K + 1 critical points of f and Ξ¦ K . …where t j ⁑ ( 𝐱 ) , 1 j K + 1 , are the critical points of Ξ¦ K , that is, the solutions (real and complex) of (36.4.1). … β–ΊThis technique can be applied to generate a hierarchy of approximations for the diffraction catastrophes Ξ¨ K ⁑ ( 𝐱 ; k ) in (36.2.10) away from 𝐱 = 𝟎 , in terms of canonical integrals Ξ¨ J ⁑ ( ΞΎ ⁑ ( 𝐱 ; k ) ) for J < K . For example, the diffraction catastrophe Ξ¨ 2 ⁑ ( x , y ; k ) defined by (36.2.10), and corresponding to the Pearcey integral (36.2.14), can be approximated by the Airy function Ξ¨ 1 ⁑ ( ΞΎ ⁑ ( x , y ; k ) ) when k is large, provided that x and y are not small. …
    19: Bibliography W
    β–Ί
  • J. Walker (1989) A drop of water becomes a gateway into the world of catastrophe optics. Scientific American 261, pp. 120–123.
  • β–Ί
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • β–Ί
  • F. J. Wright (1980) The Stokes set of the cusp diffraction catastrophe. J. Phys. A 13 (9), pp. 2913–2928.
  • 20: 8.26 Tables
    β–Ί
  • Khamis (1965) tabulates P ⁑ ( a , x ) for a = 0.05 ⁒ ( .05 ) ⁒ 10 ⁒ ( .1 ) ⁒ 20 ⁒ ( .25 ) ⁒ 70 , 0.0001 x 250 to 10D.

  • β–Ί
  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ⁑ ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ⁒ ( .01 ) ⁒ 2 to 7D; also ( x + n ) ⁒ e x ⁒ E n ⁑ ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ⁒ ( .01 ) ⁒ 0.1 ⁒ ( .05 ) ⁒ 0.5 to 6S.

  • β–Ί
  • Pagurova (1961) tabulates E n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 20 , x = 0 ⁒ ( .01 ) ⁒ 2 ⁒ ( .1 ) ⁒ 10 to 4-9S; e x ⁒ E n ⁑ ( x ) for n = 2 ⁒ ( 1 ) ⁒ 10 , x = 10 ⁒ ( .1 ) ⁒ 20 to 7D; e x ⁒ E p ⁑ ( x ) for p = 0 ⁒ ( .1 ) ⁒ 1 , x = 0.01 ⁒ ( .01 ) ⁒ 7 ⁒ ( .05 ) ⁒ 12 ⁒ ( .1 ) ⁒ 20 to 7S or 7D.

  • β–Ί
  • Zhang and Jin (1996, Table 19.1) tabulates E n ⁑ ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ⁒ ( .1 ) ⁒ 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.