About the Project

exponential function

AdvancedHelp

(0.020 seconds)

31—40 of 414 matching pages

31: 13.6 Relations to Other Functions
13.6.1 M ( a , a , z ) = e z ,
When a b is an integer or a is a positive integer the Kummer functions can be expressed as incomplete gamma functions (or generalized exponential integrals). …
13.6.5 M ( a , a + 1 , z ) = e z M ( 1 , a + 1 , z ) = a z a γ ( a , z ) ,
32: 20.6 Power Series
20.6.2 θ 1 ( π z | τ ) = π z θ 1 ( 0 | τ ) exp ( j = 1 1 2 j δ 2 j ( τ ) z 2 j ) ,
20.6.3 θ 2 ( π z | τ ) = θ 2 ( 0 | τ ) exp ( j = 1 1 2 j α 2 j ( τ ) z 2 j ) ,
20.6.4 θ 3 ( π z | τ ) = θ 3 ( 0 | τ ) exp ( j = 1 1 2 j β 2 j ( τ ) z 2 j ) ,
20.6.5 θ 4 ( π z | τ ) = θ 4 ( 0 | τ ) exp ( j = 1 1 2 j γ 2 j ( τ ) z 2 j ) .
33: 8.8 Recurrence Relations and Derivatives
8.8.4 z γ ( a + 1 , z ) = γ ( a , z ) e z Γ ( a + 1 ) .
8.8.5 P ( a + 1 , z ) = P ( a , z ) z a e z Γ ( a + 1 ) ,
8.8.6 Q ( a + 1 , z ) = Q ( a , z ) + z a e z Γ ( a + 1 ) .
8.8.11 P ( a + n , z ) = P ( a , z ) z a e z k = 0 n 1 z k Γ ( a + k + 1 ) ,
8.8.12 Q ( a + n , z ) = Q ( a , z ) + z a e z k = 0 n 1 z k Γ ( a + k + 1 ) .
34: 32.15 Orthogonal Polynomials
32.15.1 exp ( 1 4 ξ 4 z ξ 2 ) p m ( ξ ) p n ( ξ ) d ξ = δ m , n ,
35: 10.14 Inequalities; Monotonicity
10.14.4 | J ν ( z ) | | 1 2 z | ν e | z | Γ ( ν + 1 ) , ν 1 2 .
10.14.5 | J ν ( ν x ) | x ν exp ( ν ( 1 x 2 ) 1 2 ) ( 1 + ( 1 x 2 ) 1 2 ) ν , ν 0 , 0 < x 1 ;
10.14.6 | J ν ( ν x ) | ( 1 + x 2 ) 1 4 x ( 2 π ν ) 1 2 x ν exp ( ν ( 1 x 2 ) 1 2 ) ( 1 + ( 1 x 2 ) 1 2 ) ν , ν > 0 , 0 < x 1 ;
10.14.7 1 J ν ( ν x ) x ν J ν ( ν ) e ν ( 1 x ) , ν 0 , 0 < x 1 ;
10.14.8 | J n ( n z ) | | z n exp ( n ( 1 z 2 ) 1 2 ) | | 1 + ( 1 z 2 ) 1 2 | n , n = 0 , 1 , 2 , ,
36: 4.5 Inequalities
§4.5(ii) Exponentials
For more inequalities involving the exponential function see Mitrinović (1964, pp. 73–77), Mitrinović (1970, pp. 266–271), and Bullen (1998, pp. 81–83).
37: 8.7 Series Expansions
8.7.1 γ ( a , z ) = e z k = 0 z k Γ ( a + k + 1 ) = 1 Γ ( a ) k = 0 ( z ) k k ! ( a + k ) .
8.7.2 γ ( a , x + y ) γ ( a , x ) = Γ ( a , x ) Γ ( a , x + y ) = e x x a 1 n = 0 ( 1 a ) n ( x ) n ( 1 e y e n ( y ) ) , | y | < | x | .
8.7.3 Γ ( a , z ) = Γ ( a ) k = 0 ( 1 ) k z a + k k ! ( a + k ) = Γ ( a ) ( 1 z a e z k = 0 z k Γ ( a + k + 1 ) ) , a 0 , 1 , 2 , .
8.7.4 γ ( a , x ) = Γ ( a ) x 1 2 a e x n = 0 e n ( 1 ) x 1 2 n I n + a ( 2 x 1 / 2 ) , a 0 , 1 , 2 , .
8.7.5 γ ( a , z ) = e 1 2 z n = 0 ( 1 a ) n Γ ( n + a + 1 ) ( 2 n + 1 ) 𝗂 n ( 1 ) ( 1 2 z ) .
38: 7.10 Derivatives
7.10.1 d n + 1 erf z d z n + 1 = ( 1 ) n 2 π H n ( z ) e z 2 , n = 0 , 1 , 2 , .
39: 6.13 Zeros
The function Ei ( x ) has one real zero x 0 , given by …
40: 4.28 Definitions and Periodicity
4.28.1 sinh z = e z e z 2 ,
4.28.2 cosh z = e z + e z 2 ,
4.28.3 cosh z ± sinh z = e ± z ,