About the Project

epsilon function

AdvancedHelp

(0.004 seconds)

11—20 of 63 matching pages

11: 23.18 Modular Transformations
23.18.5 η ( 𝒜 τ ) = ε ( 𝒜 ) ( i ( c τ + d ) ) 1 / 2 η ( τ ) ,
where the square root has its principal value and
23.18.6 ε ( 𝒜 ) = exp ( π i ( a + d 12 c + s ( d , c ) ) ) ,
12: 33.16 Connection Formulas
§33.16(i) F and G in Terms of f and h
§33.16(ii) f and h in Terms of F and G when ϵ > 0
§33.16(iii) f and h in Terms of W κ , μ ( z ) when ϵ < 0
§33.16(iv) s and c in Terms of F and G when ϵ > 0
§33.16(v) s and c in Terms of W κ , μ ( z ) when ϵ < 0
13: 33.19 Power-Series Expansions in r
§33.19 Power-Series Expansions in r
33.19.1 f ( ϵ , ; r ) = r + 1 k = 0 α k r k ,
33.19.3 2 π h ( ϵ , ; r ) = k = 0 2 ( 2 k ) ! γ k k ! ( 2 r ) k k = 0 δ k r k + + 1 A ( ϵ , ) ( 2 ln | 2 r / κ | + ψ ( + 1 + κ ) + ψ ( + κ ) ) f ( ϵ , ; r ) , r 0 .
33.19.6 k ( k + 2 + 1 ) δ k + 2 δ k 1 + ϵ δ k 2 + 2 ( 2 k + 2 + 1 ) A ( ϵ , ) α k = 0 , k = 2 , 3 , ,
14: 33.24 Tables
§33.24 Tables
  • Curtis (1964a) tabulates P ( ϵ , r ) , Q ( ϵ , r ) 33.1), and related functions for = 0 , 1 , 2 and ϵ = 2 ( .2 ) 2 , with x = 0 ( .1 ) 4 for ϵ < 0 and x = 0 ( .1 ) 10 for ϵ 0 ; 6D.

  • 15: 33.1 Special Notation
    The main functions treated in this chapter are first the Coulomb radial functions F ( η , ρ ) , G ( η , ρ ) , H ± ( η , ρ ) (Sommerfeld (1928)), which are used in the case of repulsive Coulomb interactions, and secondly the functions f ( ϵ , ; r ) , h ( ϵ , ; r ) , s ( ϵ , ; r ) , c ( ϵ , ; r ) (Seaton (1982, 2002a)), which are used in the case of attractive Coulomb interactions. …
  • Greene et al. (1979):

    f ( 0 ) ( ϵ , ; r ) = f ( ϵ , ; r ) , f ( ϵ , ; r ) = s ( ϵ , ; r ) , g ( ϵ , ; r ) = c ( ϵ , ; r ) .

  • 16: 28.24 Expansions in Series of Cross-Products of Bessel Functions or Modified Bessel Functions
    28.24.2 ε s Mc 2 m ( j ) ( z , h ) = ( 1 ) m = 0 ( 1 ) A 2 2 m ( h 2 ) A 2 s 2 m ( h 2 ) ( J s ( h e z ) 𝒞 + s ( j ) ( h e z ) + J + s ( h e z ) 𝒞 s ( j ) ( h e z ) ) ,
    28.24.6 ε s Ie 2 m ( z , h ) = ( 1 ) s = 0 ( 1 ) A 2 2 m ( h 2 ) A 2 s 2 m ( h 2 ) ( I s ( h e z ) I + s ( h e z ) + I + s ( h e z ) I s ( h e z ) ) ,
    28.24.10 ε s Ke 2 m ( z , h ) = = 0 A 2 2 m ( h 2 ) A 2 s 2 m ( h 2 ) ( I s ( h e z ) K + s ( h e z ) + I + s ( h e z ) K s ( h e z ) ) ,
    17: 33.21 Asymptotic Approximations for Large | r |
    §33.21(i) Limiting Forms
  • (b)

    When r ± with ϵ < 0 , Equations (33.16.10)–(33.16.13) are combined with

    33.21.1
    ζ ( ν , r ) e r / ν ( 2 r / ν ) ν ,
    ξ ( ν , r ) e r / ν ( 2 r / ν ) ν , r ,
    33.21.2
    ζ ( ν , r ) e r / ν ( 2 r / ν ) ν ,
    ξ ( ν , r ) e r / ν ( 2 r / ν ) ν , r .

    Corresponding approximations for s ( ϵ , ; r ) and c ( ϵ , ; r ) as r can be obtained via (33.16.17), and as r via (33.16.18).

  • §33.21(ii) Asymptotic Expansions
    18: 33.22 Particle Scattering and Atomic and Molecular Spectra
    𝗄 Scaling
    Z Scaling
    i 𝗄 Scaling
    §33.22(iii) Conversions Between Variables
    19: 2.6 Distributional Methods
    2.6.23 lim ε 0 t s α , ϕ ε = π sin ( π α ) ( 1 ) s z s + α ,
    2.6.24 lim ε 0 t s 1 , ϕ ε = ( 1 ) s + 1 z s + 1 k = 1 s 1 k + ( 1 ) s z s + 1 ln z ,
    2.6.25 lim ε 0 f , ϕ ε = 𝒮 f ( z ) ,
    20: 33.23 Methods of Computation
    §33.23 Methods of Computation