About the Project

elliptical

AdvancedHelp

(0.001 seconds)

21—30 of 169 matching pages

21: 19.13 Integrals of Elliptic Integrals
§19.13 Integrals of Elliptic Integrals
§19.13(i) Integration with Respect to the Modulus
§19.13(ii) Integration with Respect to the Amplitude
§19.13(iii) Laplace Transforms
For direct and inverse Laplace transforms for the complete elliptic integrals K ( k ) , E ( k ) , and D ( k ) see Prudnikov et al. (1992a, §3.31) and Prudnikov et al. (1992b, §§3.29 and 4.3.33), respectively.
22: 22.11 Fourier and Hyperbolic Series
§22.11 Fourier and Hyperbolic Series
Similar expansions for cn 2 ( z , k ) and dn 2 ( z , k ) follow immediately from (22.6.1). … A related hyperbolic series is …Again, similar expansions for cn 2 ( z , k ) and dn 2 ( z , k ) may be derived via (22.6.1). …
23: 23.13 Zeros
§23.13 Zeros
24: 29.10 Lamé Functions with Imaginary Periods
𝐸𝑐 ν 2 m ( i ( z K i K ) , k 2 ) ,
𝐸𝑐 ν 2 m + 1 ( i ( z K i K ) , k 2 ) ,
𝐸𝑠 ν 2 m + 1 ( i ( z K i K ) , k 2 ) ,
The first and the fourth functions have period 2 i K ; the second and the third have period 4 i K . …
25: 22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
§22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
22.12.2 2 K k sn ( 2 K t , k ) = n = π sin ( π ( t ( n + 1 2 ) τ ) ) = n = ( m = ( 1 ) m t m ( n + 1 2 ) τ ) ,
22.12.8 2 K dc ( 2 K t , k ) = n = π sin ( π ( t + 1 2 n τ ) ) = n = ( m = ( 1 ) m t + 1 2 m n τ ) ,
22.12.13 2 K cs ( 2 K t , k ) = lim N n = N N ( 1 ) n π tan ( π ( t n τ ) ) = lim N n = N N ( 1 ) n ( lim M m = M M 1 t m n τ ) .
26: 19.4 Derivatives and Differential Equations
§19.4(i) Derivatives
d E ( k ) d k = E ( k ) K ( k ) k ,
§19.4(ii) Differential Equations
If ϕ = π / 2 , then these two equations become hypergeometric differential equations (15.10.1) for K ( k ) and E ( k ) . An analogous differential equation of third order for Π ( ϕ , α 2 , k ) is given in Byrd and Friedman (1971, 118.03).
27: 29.14 Orthogonality
29.14.2 g , h = 0 K 0 K w ( s , t ) g ( s , t ) h ( s , t ) d t d s ,
29.14.3 w ( s , t ) = sn 2 ( K + i t , k ) sn 2 ( s , k ) .
29.14.4 𝑠𝐸 2 n + 1 m ( s , k 2 ) 𝑠𝐸 2 n + 1 m ( K + i t , k 2 ) ,
29.14.5 𝑐𝐸 2 n + 1 m ( s , k 2 ) 𝑐𝐸 2 n + 1 m ( K + i t , k 2 ) ,
29.14.11 g , h = 0 4 K 0 2 K w ( s , t ) g ( s , t ) h ( s , t ) d t d s ,
28: 19.7 Connection Formulas
§19.7 Connection Formulas
Reciprocal-Modulus Transformation
Imaginary-Modulus Transformation
Imaginary-Argument Transformation
§19.7(iii) Change of Parameter of Π ( ϕ , α 2 , k )
29: 19.6 Special Cases
§19.6 Special Cases
§19.6(i) Complete Elliptic Integrals
Exact values of K ( k ) and E ( k ) for various special values of k are given in Byrd and Friedman (1971, 111.10 and 111.11) and Cooper et al. (2006).
§19.6(ii) F ( ϕ , k )
§19.6(iii) E ( ϕ , k )
30: 29.13 Graphics
See accompanying text
Figure 29.13.5: 𝑢𝐸 4 m ( x , 0.1 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 1.61244 . Magnify
See accompanying text
Figure 29.13.6: 𝑢𝐸 4 m ( x , 0.9 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 2.57809 . Magnify
See accompanying text
Figure 29.13.7: 𝑠𝐸 5 m ( x , 0.1 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 1.61244 . Magnify
See accompanying text
Figure 29.13.8: 𝑠𝐸 5 m ( x , 0.9 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 2.57809 . Magnify
See accompanying text
Figure 29.13.9: 𝑐𝐸 5 m ( x , 0.1 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 1.61244 . Magnify