About the Project

elliptic form

AdvancedHelp

(0.003 seconds)

21—30 of 51 matching pages

21: 23.21 Physical Applications
In §22.19(ii) it is noted that Jacobian elliptic functions provide a natural basis of solutions for problems in Newtonian classical dynamics with quartic potentials in canonical form ( 1 x 2 ) ( 1 k 2 x 2 ) . …
22: 22.8 Addition Theorems
§22.8 Addition Theorems
§22.8(ii) Alternative Forms for Sum of Two Arguments
§22.8(iii) Special Relations Between Arguments
If sums/differences of the z j ’s are rational multiples of K ( k ) , then further relations follow. …
23: 36.10 Differential Equations
In terms of the normal forms (36.2.2) and (36.2.3), the Ψ ( U ) ( 𝐱 ) satisfy the following operator equations …
24: 36.7 Zeros
§36.7(iii) Elliptic Umbilic Canonical Integral
The zeros are lines in 𝐱 = ( x , y , z ) space where ph Ψ ( E ) ( 𝐱 ) is undetermined. Deep inside the bifurcation set, that is, inside the three-cusped astroid (36.4.10) and close to the part of the z -axis that is far from the origin, the zero contours form an array of rings close to the planes …Away from the z -axis and approaching the cusp lines (ribs) (36.4.11), the lattice becomes distorted and the rings are deformed, eventually joining to form “hairpins” whose arms become the pairs of zeros (36.7.1) of the cusp canonical integral. …Outside the bifurcation set (36.4.10), each rib is flanked by a series of zero lines in the form of curly “antelope horns” related to the “outside” zeros (36.7.2) of the cusp canonical integral. …
25: 23.18 Modular Transformations
Elliptic Modular Function
according as the elements [ a b c d ] of 𝒜 in (23.15.3) have the respective forms
23.18.3 λ ( 𝒜 τ ) = λ ( τ ) ,
and λ ( τ ) is a cusp form of level zero for the corresponding subgroup of SL ( 2 , ) . … J ( τ ) is a modular form of level zero for SL ( 2 , ) . …
26: 19.31 Probability Distributions
§19.31 Probability Distributions
R G ( x , y , z ) and R F ( x , y , z ) occur as the expectation values, relative to a normal probability distribution in 2 or 3 , of the square root or reciprocal square root of a quadratic form. …
27: 27.22 Software
  • Maple. isprime combines a strong pseudoprime test and a Lucas pseudoprime test. ifactor uses cfrac27.19) after exhausting trial division. Brent–Pollard rho, Square Forms Factorization, and ecm are available also; see §27.19.

  • Mathematica. PrimeQ combines strong pseudoprime tests for the bases 2 and 3 and a Lucas pseudoprime test. No known composite numbers pass these three tests, and Bleichenbacher (1996) has shown that this combination of tests proves primality for integers below 10 16 . Provable PrimeQ uses the Atkin–Goldwasser–Kilian–Morain Elliptic Curve Method to prove primality. FactorInteger tries Brent–Pollard rho, Pollard p 1 , and then cfrac after trial division. See §27.19. ecm is available also, and the Multiple Polynomial Quadratic sieve is expected in a future release.

    For additional Mathematica routines for factorization and primality testing, including several different pseudoprime tests, see Bressoud and Wagon (2000).

  • ECMNET Project. Links to software for elliptic curve methods of factorization and primality testing.

  • 28: 23.15 Definitions
    The set of all bilinear transformations of this form is denoted by SL ( 2 , ) (Serre (1973, p. 77)). … If, as a function of q , f ( τ ) is analytic at q = 0 , then f ( τ ) is called a modular form. If, in addition, f ( τ ) 0 as q 0 , then f ( τ ) is called a cusp form. …
    Elliptic Modular Function
    29: 19.18 Derivatives and Differential Equations
    The next four differential equations apply to the complete case of R F and R G in the form R a ( 1 2 , 1 2 ; z 1 , z 2 ) (see (19.16.20) and (19.16.23)). …
    30: 19.25 Relations to Other Functions
    §19.25(ii) Bulirsch’s Integrals as Symmetric Integrals
    §19.25(v) Jacobian Elliptic Functions
    §19.25(vi) Weierstrass Elliptic Functions