About the Project

ellipsoidal%20harmonics

AdvancedHelp

(0.002 seconds)

1—10 of 128 matching pages

1: 14.30 Spherical and Spheroidal Harmonics
§14.30 Spherical and Spheroidal Harmonics
§14.30(i) Definitions
§14.30(iii) Sums
2: 29.18 Mathematical Applications
§29.18(ii) Ellipsoidal Coordinates
The wave equation (29.18.1), when transformed to ellipsoidal coordinates α , β , γ : …
29.18.10 u ( α , β , γ ) = u 1 ( α ) u 2 ( β ) u 3 ( γ ) ,
§29.18(iii) Spherical and Ellipsoidal Harmonics
3: 19.33 Triaxial Ellipsoids
§19.33 Triaxial Ellipsoids
§19.33(i) Surface Area
§19.33(ii) Potential of a Charged Conducting Ellipsoid
§19.33(iii) Depolarization Factors
§19.33(iv) Self-Energy of an Ellipsoidal Distribution
4: 23.21 Physical Applications
§23.21(iii) Ellipsoidal Coordinates
Ellipsoidal coordinates ( ξ , η , ζ ) may be defined as the three roots ρ of the equation …The Laplacian operator 2 1.5(ii)) is given by
23.21.2 ( η ζ ) ( ζ ξ ) ( ξ η ) 2 = ( ζ η ) f ( ξ ) f ( ξ ) ξ + ( ξ ζ ) f ( η ) f ( η ) η + ( η ξ ) f ( ζ ) f ( ζ ) ζ ,
5: 29.11 Lamé Wave Equation
§29.11 Lamé Wave Equation
The Lamé (or ellipsoidal) wave equation is given by …
6: Bibliography M
  • T. M. MacRobert (1967) Spherical Harmonics. An Elementary Treatise on Harmonic Functions with Applications. 3rd edition, International Series of Monographs in Pure and Applied Mathematics, Vol. 98, Pergamon Press, Oxford.
  • J. Meixner (1944) Die Laméschen Wellenfunktionen des Drehellipsoids. Forschungsbericht No. 1952 ZWB (German).
  • H. J. W. Müller (1966a) Asymptotic expansions of ellipsoidal wave functions and their characteristic numbers. Math. Nachr. 31, pp. 89–101.
  • H. J. W. Müller (1966b) Asymptotic expansions of ellipsoidal wave functions in terms of Hermite functions. Math. Nachr. 32, pp. 49–62.
  • H. J. W. Müller (1966c) On asymptotic expansions of ellipsoidal wave functions. Math. Nachr. 32, pp. 157–172.
  • 7: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • H. Alzer (1997a) A harmonic mean inequality for the gamma function. J. Comput. Appl. Math. 87 (2), pp. 195–198.
  • F. M. Arscott (1956) Perturbation solutions of the ellipsoidal wave equation. Quart. J. Math. Oxford Ser. (2) 7, pp. 161–174.
  • F. M. Arscott (1959) A new treatment of the ellipsoidal wave equation. Proc. London Math. Soc. (3) 9, pp. 21–50.
  • 8: Bibliography W
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • G. N. Watson (1935b) The surface of an ellipsoid. Quart. J. Math., Oxford Ser. 6, pp. 280–287.
  • G. Weiss (1965) Harmonic Analysis. In Studies in Real and Complex Analysis, I. I. Hirschman (Ed.), Studies in Mathematics, Vol. 3, pp. 124–178.
  • E. T. Whittaker (1902) On the functions associated with the parabolic cylinder in harmonic analysis. Proc. London Math. Soc. 35, pp. 417–427.
  • 9: 19.15 Advantages of Symmetry
    These reduction theorems, unknown in the Legendre theory, allow symbolic integration without imposing conditions on the parameters and the limits of integration (see §19.29(ii)). For the many properties of ellipses and triaxial ellipsoids that can be represented by elliptic integrals, any symmetry in the semiaxes remains obvious when symmetric integrals are used (see (19.30.5) and §19.33). For example, the computation of depolarization factors for solid ellipsoids is simplified considerably; compare (19.33.7) with Cronemeyer (1991). …
    10: Bibliography H
  • F. E. Harris (2002) Analytic evaluation of two-center STO electron repulsion integrals via ellipsoidal expansion. Internat. J. Quantum Chem. 88 (6), pp. 701–734.
  • E. W. Hobson (1931) The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press, London-New York.
  • L. K. Hua (1963) Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Translations of Mathematical Monographs, Vol. 6, American Mathematical Society, Providence, RI.