About the Project

elle Customer support Number +1205-892-1862 heine ell Free Number

AdvancedHelp

(0.004 seconds)

11—20 of 404 matching pages

11: 33.18 Limiting Forms for Large
§33.18 Limiting Forms for Large
As with ϵ and r ( 0 ) fixed,
f ( ϵ , ; r ) ( 2 r ) + 1 ( 2 + 1 ) ! ,
h ( ϵ , ; r ) ( 2 ) ! π ( 2 r ) .
12: 18.18 Sums
Expansion of L 2 functions
In all three cases of Jacobi, Laguerre and Hermite, if f ( x ) is L 2 on the corresponding interval with respect to the corresponding weight function and if a n , b n , d n are given by (18.18.1), (18.18.5), (18.18.7), respectively, then the respective series expansions (18.18.2), (18.18.4), (18.18.6) are valid with the sums converging in L 2 sense. …
18.18.12 L n ( α ) ( λ x ) L n ( α ) ( 0 ) = = 0 n ( n ) λ ( 1 λ ) n L ( α ) ( x ) L ( α ) ( 0 ) .
18.18.18 L n ( β ) ( x ) = = 0 n ( β α ) n ( n ) ! L ( α ) ( x ) ,
18.18.19 x n = ( α + 1 ) n = 0 n ( n ) ( α + 1 ) L ( α ) ( x ) .
13: 33.1 Special Notation
k , nonnegative integers.
The main functions treated in this chapter are first the Coulomb radial functions F ( η , ρ ) , G ( η , ρ ) , H ± ( η , ρ ) (Sommerfeld (1928)), which are used in the case of repulsive Coulomb interactions, and secondly the functions f ( ϵ , ; r ) , h ( ϵ , ; r ) , s ( ϵ , ; r ) , c ( ϵ , ; r ) (Seaton (1982, 2002a)), which are used in the case of attractive Coulomb interactions. …
  • Curtis (1964a):

    P ( ϵ , r ) = ( 2 + 1 ) ! f ( ϵ , ; r ) / 2 + 1 , Q ( ϵ , r ) = ( 2 + 1 ) ! h ( ϵ , ; r ) / ( 2 + 1 A ( ϵ , ) ) .

  • Greene et al. (1979):

    f ( 0 ) ( ϵ , ; r ) = f ( ϵ , ; r ) , f ( ϵ , ; r ) = s ( ϵ , ; r ) , g ( ϵ , ; r ) = c ( ϵ , ; r ) .

  • 14: 33.13 Complex Variable and Parameters
    The functions F ( η , ρ ) , G ( η , ρ ) , and H ± ( η , ρ ) may be extended to noninteger values of by generalizing ( 2 + 1 ) ! = Γ ( 2 + 2 ) , and supplementing (33.6.5) by a formula derived from (33.2.8) with U ( a , b , z ) expanded via (13.2.42). These functions may also be continued analytically to complex values of ρ , η , and . The quantities C ( η ) , σ ( η ) , and R , given by (33.2.6), (33.2.10), and (33.4.1), respectively, must be defined consistently so that
    33.13.1 C ( η ) = 2 e i σ ( η ) ( π η / 2 ) Γ ( + 1 i η ) / Γ ( 2 + 2 ) ,
    33.13.2 R = ( 2 + 1 ) C ( η ) / C 1 ( η ) .
    15: 24.16 Generalizations
    For = 0 , 1 , 2 , , Bernoulli and Euler polynomials of order are defined respectively by …When x = 0 they reduce to the Bernoulli and Euler numbers of order : …Also for = 1 , 2 , 3 , , … For extensions of B n ( ) ( x ) to complex values of x , n , and , and also for uniform asymptotic expansions for large x and large n , see Temme (1995b) and López and Temme (1999b, 2010b). … (This notation is consistent with (24.16.3) when x = .) …
    16: 33.15 Graphics
    §33.15(i) Line Graphs of the Coulomb Functions f ( ϵ , ; r ) and h ( ϵ , ; r )
    See accompanying text
    Figure 33.15.1: f ( ϵ , ; r ) , h ( ϵ , ; r ) with = 0 , ϵ = 4 . Magnify
    See accompanying text
    Figure 33.15.2: f ( ϵ , ; r ) , h ( ϵ , ; r ) with = 1 , ϵ = 4 . Magnify
    See accompanying text
    Figure 33.15.3: f ( ϵ , ; r ) , h ( ϵ , ; r ) with = 0 , ϵ = 1 / ν 2 , ν = 1.5 . Magnify
    §33.15(ii) Surfaces of the Coulomb Functions f ( ϵ , ; r ) , h ( ϵ , ; r ) , s ( ϵ , ; r ) , and c ( ϵ , ; r )
    17: DLMF Project News
    error generating summary
    18: 33.6 Power-Series Expansions in ρ
    33.6.1 F ( η , ρ ) = C ( η ) k = + 1 A k ( η ) ρ k ,
    where A + 1 = 1 , A + 2 = η / ( + 1 ) , and
    33.6.3 ( k + ) ( k 1 ) A k = 2 η A k 1 A k 2 , k = + 3 , + 4 , ,
    where a = 1 + ± i η and ψ ( x ) = Γ ( x ) / Γ ( x ) 5.2(i)). … Corresponding expansions for H ± ( η , ρ ) can be obtained by combining (33.6.5) with (33.4.3) or (33.4.4).
    19: 16.17 Definition
    where the integration path L separates the poles of the factors Γ ( b s ) from those of the factors Γ ( 1 a + s ) . There are three possible choices for L , illustrated in Figure 16.17.1 in the case m = 1 , n = 2 :
  • (i)

    L goes from i to i . The integral converges if p + q < 2 ( m + n ) and | ph z | < ( m + n 1 2 ( p + q ) ) π .

  • (ii)

    L is a loop that starts at infinity on a line parallel to the positive real axis, encircles the poles of the Γ ( b s ) once in the negative sense and returns to infinity on another line parallel to the positive real axis. The integral converges for all z ( 0 ) if p < q , and for 0 < | z | < 1 if p = q 1 .

  • (iii)

    L is a loop that starts at infinity on a line parallel to the negative real axis, encircles the poles of the Γ ( 1 a + s ) once in the positive sense and returns to infinity on another line parallel to the negative real axis. The integral converges for all z if p > q , and for | z | > 1 if p = q 1 .

  • 20: 28.23 Expansions in Series of Bessel Functions
    28.23.6 Mc 2 m ( j ) ( z , h ) = ( 1 ) m ( ce 2 m ( 0 , h 2 ) ) 1 = 0 ( 1 ) A 2 2 m ( h 2 ) 𝒞 2 ( j ) ( 2 h cosh z ) ,
    28.23.8 Mc 2 m + 1 ( j ) ( z , h ) = ( 1 ) m ( ce 2 m + 1 ( 0 , h 2 ) ) 1 = 0 ( 1 ) A 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h cosh z ) ,
    28.23.10 Ms 2 m + 1 ( j ) ( z , h ) = ( 1 ) m ( se 2 m + 1 ( 0 , h 2 ) ) 1 tanh z = 0 ( 1 ) ( 2 + 1 ) B 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h cosh z ) ,
    28.23.12 Ms 2 m + 2 ( j ) ( z , h ) = ( 1 ) m ( se 2 m + 2 ( 0 , h 2 ) ) 1 tanh z = 0 ( 1 ) ( 2 + 2 ) B 2 + 2 2 m + 2 ( h 2 ) 𝒞 2 + 2 ( j ) ( 2 h cosh z ) ,
    When j = 2 , 3 , 4 the series in the even-numbered equations converge for z > 0 and | cosh z | > 1 , and the series in the odd-numbered equations converge for z > 0 and | sinh z | > 1 . …