About the Project

eigenvalues of accessory parameter

AdvancedHelp

(0.002 seconds)

21—30 of 415 matching pages

21: 29.15 Fourier Series and Chebyshev Series
β–ΊA convenient way of constructing the coefficients, together with the eigenvalues, is as follows. Equations (29.6.4), with p = 1 , 2 , , n , (29.6.3), and A 2 ⁒ n + 2 = 0 can be cast as an algebraic eigenvalue problem in the following way. …Let the eigenvalues of 𝐌 be H p with … β–Ί
29.15.7 a ν 2 ⁒ m ⁑ ( k 2 ) = 1 2 ⁒ ( H m + ν ⁒ ( ν + 1 ) ⁒ k 2 ) ,
β–Ί
29.15.22 a ν 2 ⁒ m ⁑ ( k 2 ) = 1 2 ⁒ ( H m + ν ⁒ ( ν + 1 ) ⁒ k 2 ) ,
22: 29.13 Graphics
β–Ί
§29.13(i) Eigenvalues for Lamé Polynomials
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 29.13.1: a 2 m ⁑ ( k 2 ) , b 2 m ⁑ ( k 2 ) as functions of k 2 for m = 0 , 1 , 2 ( a ’s), m = 1 , 2 ( b ’s). Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 29.13.2: a 1 m ⁑ ( k 2 ) , b 1 m ⁑ ( k 2 ) as functions of k 2 for m = 0 , 1 ( a ’s), m = 1 ( b ’s). Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 29.13.3: a 3 m ⁑ ( k 2 ) , b 3 m ⁑ ( k 2 ) as functions of k 2 for m = 0 , 1 , 2 , 3 ( a ’s), m = 1 , 2 , 3 ( b ’s). Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 29.13.4: a 4 m ⁑ ( k 2 ) , b 4 m ⁑ ( k 2 ) as functions of k 2 for m = 0 , 1 , 2 , 3 , 4 ( a ’s), m = 1 , 2 , 3 , 4 ( b ’s). Magnify
23: 28.4 Fourier Series
β–Ί
( a 4 ⁒ m 2 ) ⁒ A 2 ⁒ m q ⁒ ( A 2 ⁒ m 2 + A 2 ⁒ m + 2 ) = 0 , m = 2 , 3 , 4 , , a = a 2 ⁒ n ⁑ ( q ) , A 2 ⁒ m = A 2 ⁒ m 2 ⁒ n ⁑ ( q ) .
β–Ί
28.4.24 A 2 ⁒ m 2 ⁒ n ⁑ ( q ) A 0 2 ⁒ n ⁑ ( q ) = ( 1 ) m ( m ! ) 2 ⁒ ( q 4 ) m ⁒ Ο€ ⁒ ( 1 + O ⁑ ( m 1 ) ) w II ⁑ ( 1 2 ⁒ Ο€ ; a 2 ⁒ n ⁑ ( q ) , q ) ,
β–Ί
28.4.25 A 2 ⁒ m + 1 2 ⁒ n + 1 ⁑ ( q ) A 1 2 ⁒ n + 1 ⁑ ( q ) = ( 1 ) m + 1 ( ( 1 2 ) m + 1 ) 2 ⁒ ( q 4 ) m + 1 ⁒ 2 ⁒ ( 1 + O ⁑ ( m 1 ) ) w II ⁑ ( 1 2 ⁒ Ο€ ; a 2 ⁒ n + 1 ⁑ ( q ) , q ) ,
β–Ί
28.4.26 B 2 ⁒ m + 1 2 ⁒ n + 1 ⁑ ( q ) B 1 2 ⁒ n + 1 ⁑ ( q ) = ( 1 ) m ( ( 1 2 ) m + 1 ) 2 ⁒ ( q 4 ) m + 1 ⁒ 2 ⁒ ( 1 + O ⁑ ( m 1 ) ) w I ⁑ ( 1 2 ⁒ Ο€ ; b 2 ⁒ n + 1 ⁑ ( q ) , q ) ,
β–Ί
28.4.27 B 2 ⁒ m 2 ⁒ n + 2 ⁑ ( q ) B 2 2 ⁒ n + 2 ⁑ ( q ) = ( 1 ) m ( m ! ) 2 ⁒ ( q 4 ) m ⁒ q ⁒ Ο€ ⁒ ( 1 + O ⁑ ( m 1 ) ) w I ⁑ ( 1 2 ⁒ Ο€ ; b 2 ⁒ n + 2 ⁑ ( q ) , q ) .
24: 29.1 Special Notation
β–ΊAll derivatives are denoted by differentials, not by primes. β–ΊThe main functions treated in this chapter are the eigenvalues a Ξ½ 2 ⁒ m ⁑ ( k 2 ) , a Ξ½ 2 ⁒ m + 1 ⁑ ( k 2 ) , b Ξ½ 2 ⁒ m + 1 ⁑ ( k 2 ) , b Ξ½ 2 ⁒ m + 2 ⁑ ( k 2 ) , the Lamé functions 𝐸𝑐 Ξ½ 2 ⁒ m ⁑ ( z , k 2 ) , 𝐸𝑐 Ξ½ 2 ⁒ m + 1 ⁑ ( z , k 2 ) , 𝐸𝑠 Ξ½ 2 ⁒ m + 1 ⁑ ( z , k 2 ) , 𝐸𝑠 Ξ½ 2 ⁒ m + 2 ⁑ ( z , k 2 ) , and the Lamé polynomials 𝑒𝐸 2 ⁒ n m ⁑ ( z , k 2 ) , 𝑠𝐸 2 ⁒ n + 1 m ⁑ ( z , k 2 ) , 𝑐𝐸 2 ⁒ n + 1 m ⁑ ( z , k 2 ) , 𝑑𝐸 2 ⁒ n + 1 m ⁑ ( z , k 2 ) , 𝑠𝑐𝐸 2 ⁒ n + 2 m ⁑ ( z , k 2 ) , 𝑠𝑑𝐸 2 ⁒ n + 2 m ⁑ ( z , k 2 ) , 𝑐𝑑𝐸 2 ⁒ n + 2 m ⁑ ( z , k 2 ) , 𝑠𝑐𝑑𝐸 2 ⁒ n + 3 m ⁑ ( z , k 2 ) . The notation for the eigenvalues and functions is due to Erdélyi et al. (1955, §15.5.1) and that for the polynomials is due to Arscott (1964b, §9.3.2). … β–ΊOther notations that have been used are as follows: Ince (1940a) interchanges a Ξ½ 2 ⁒ m + 1 ⁑ ( k 2 ) with b Ξ½ 2 ⁒ m + 1 ⁑ ( k 2 ) . … β–Ί
( s Ξ½ m ⁑ ( k 2 ) ) 2 = 4 Ο€ ⁒ 0 K ⁑ ( 𝐸𝑠 Ξ½ m ⁑ ( x , k 2 ) ) 2 ⁒ d x .
25: 30.9 Asymptotic Approximations and Expansions
§30.9 Asymptotic Approximations and Expansions
β–ΊFor uniform asymptotic expansions in terms of Airy or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1986). … β–ΊThe asymptotic behavior of Ξ» n m ⁑ ( Ξ³ 2 ) and a n , k m ⁑ ( Ξ³ 2 ) as n in descending powers of 2 ⁒ n + 1 is derived in Meixner (1944). …The behavior of Ξ» n m ⁑ ( Ξ³ 2 ) for complex Ξ³ 2 and large | Ξ» n m ⁑ ( Ξ³ 2 ) | is investigated in Hunter and Guerrieri (1982).
26: 29.20 Methods of Computation
β–Ί
§29.20(i) Lamé Functions
β–ΊInitial approximations to the eigenvalues can be found, for example, from the asymptotic expansions supplied in §29.7(i). … β–ΊA third method is to approximate eigenvalues and Fourier coefficients of Lamé functions by eigenvalues and eigenvectors of finite matrices using the methods of §§3.2(vi) and 3.8(iv). … β–Ί
§29.20(ii) Lamé Polynomials
β–ΊThe eigenvalues corresponding to Lamé polynomials are computed from eigenvalues of the finite tridiagonal matrices 𝐌 given in §29.15(i), using methods described in §3.2(vi) and Ritter (1998). …
27: 30.7 Graphics
β–Ί
§30.7(i) Eigenvalues
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 30.7.1: Eigenvalues λ n 0 ⁑ ( γ 2 ) , n = 0 , 1 , 2 , 3 , 10 γ 2 10 . Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 30.7.2: Eigenvalues λ n 1 ⁑ ( γ 2 ) n = 1 , 2 , 3 , 4 , 10 γ 2 10 . Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 30.7.3: Eigenvalues λ n 5 ⁑ ( γ 2 ) , n = 5 , 6 , 7 , 8 , 40 γ 2 40 . Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 30.7.4: Eigenvalues λ n 10 ⁑ ( γ 2 ) , n = 10 , 11 , 12 , 13 , 50 γ 2 150 . Magnify
28: 28.29 Definitions and Basic Properties
β–ΊA generalization of Mathieu’s equation (28.2.1) is Hill’s equationβ–Ίiff e Ο€ ⁒ i ⁒ Ξ½ is an eigenvalue of the matrix … β–Ί
§28.29(iii) Discriminant and Eigenvalues in the Real Case
β–ΊTo every equation (28.29.1), there belong two increasing infinite sequences of real eigenvalues: … β–Ί
28.29.17 ΞΌ n , n = 1 , 2 , 3 , ,  with  β–³ ( ΞΌ n ) = 2 .
29: 29.9 Stability
β–ΊIf Ξ½ is not an integer, then (29.2.1) is unstable iff h a Ξ½ 0 ⁑ ( k 2 ) or h lies in one of the closed intervals with endpoints a Ξ½ m ⁑ ( k 2 ) and b Ξ½ m ⁑ ( k 2 ) , m = 1 , 2 , . If Ξ½ is a nonnegative integer, then (29.2.1) is unstable iff h a Ξ½ 0 ⁑ ( k 2 ) or h [ b Ξ½ m ⁑ ( k 2 ) , a Ξ½ m ⁑ ( k 2 ) ] for some m = 1 , 2 , , Ξ½ .
30: 28.14 Fourier Series
β–Ί
28.14.1 me ν ⁑ ( z , q ) = m = c 2 ⁒ m ν ⁑ ( q ) ⁒ e i ⁒ ( ν + 2 ⁒ m ) ⁒ z ,
β–Ί
28.14.4 q ⁒ c 2 ⁒ m + 2 ( a ( ν + 2 ⁒ m ) 2 ) ⁒ c 2 ⁒ m + q ⁒ c 2 ⁒ m 2 = 0 , a = λ ν ⁑ ( q ) , c 2 ⁒ m = c 2 ⁒ m ν ⁑ ( q ) ,
β–Ί
28.14.5 m = ( c 2 ⁒ m ν ⁑ ( q ) ) 2 = 1 ;
β–Ί
28.14.7 c 2 ⁒ m ν ⁑ ( q ) = c 2 ⁒ m ν ⁑ ( q ) ,
β–Ί
28.14.8 c 2 ⁒ m ν ⁑ ( q ) = ( 1 ) m ⁒ c 2 ⁒ m ν ⁑ ( q ) .