About the Project

eigenvalues

AdvancedHelp

(0.001 seconds)

21—30 of 87 matching pages

21: 28.35 Tables
§28.35 Tables
β–Ί
  • Blanch and Rhodes (1955) includes 𝐡𝑒 n ⁑ ( t ) , π΅π‘œ n ⁑ ( t ) , t = 1 2 ⁒ q , n = 0 ⁒ ( 1 ) ⁒ 15 ; 8D. The range of t is 0 to 0.1, with step sizes ranging from 0.002 down to 0.00025. Notation: 𝐡𝑒 n ⁑ ( t ) = a n ⁑ ( q ) + 2 ⁒ q ( 4 ⁒ n + 2 ) ⁒ q , π΅π‘œ n ⁑ ( t ) = b n ⁑ ( q ) + 2 ⁒ q ( 4 ⁒ n 2 ) ⁒ q .

  • β–Ί
  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ⁒ ( 1 ) ⁒ 6 , q = 0 ⁒ ( 1 ) ⁒ 10 ⁒ ( 2 ) ⁒ 20 ⁒ ( 4 ) ⁒ 40 ; 7D. Also ce n ⁑ ( x , q ) , se n ⁑ ( x , q ) for q = 0 ⁒ ( 1 ) ⁒ 10 , x = 1 ⁒ ( 1 ) ⁒ 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 ⁒ q , b n = π‘π‘œ n 2 ⁒ q .

  • β–Ί
  • National Bureau of Standards (1967) includes the eigenvalues a n ⁑ ( q ) , b n ⁑ ( q ) for n = 0 ⁒ ( 1 ) ⁒ 3 with q = 0 ⁒ ( .2 ) ⁒ 20 ⁒ ( .5 ) ⁒ 37 ⁒ ( 1 ) ⁒ 100 , and n = 4 ⁒ ( 1 ) ⁒ 15 with q = 0 ⁒ ( 2 ) ⁒ 100 ; Fourier coefficients for ce n ⁑ ( x , q ) and se n ⁑ ( x , q ) for n = 0 ⁒ ( 1 ) ⁒ 15 , n = 1 ⁒ ( 1 ) ⁒ 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ⁑ ( q ) , f e , n ⁑ ( q ) for n = 0 ⁒ ( 1 ) ⁒ 15 with q = 0 ⁒ ( .5 ⁒  to  ⁒ 10 ) ⁒ 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • β–Ί
  • Blanch and Clemm (1969) includes eigenvalues a n ⁑ ( q ) , b n ⁑ ( q ) for q = ρ ⁒ e i ⁒ Ο• , ρ = 0 ⁒ ( .5 ) ⁒ 25 , Ο• = 5 ∘ ⁒ ( 5 ∘ ) ⁒ 90 ∘ , n = 0 ⁒ ( 1 ) ⁒ 15 ; 4D. Also a n ⁑ ( q ) and b n ⁑ ( q ) for q = i ⁒ ρ , ρ = 0 ⁒ ( .5 ) ⁒ 100 , n = 0 ⁒ ( 2 ) ⁒ 14 and n = 2 ⁒ ( 2 ) ⁒ 16 , respectively; 8D. Double points for n = 0 ⁒ ( 1 ) ⁒ 15 ; 8D. Graphs are included.

  • 22: 30.16 Methods of Computation
    β–Ί
    §30.16(i) Eigenvalues
    β–ΊApproximations to eigenvalues can be improved by using the continued-fraction equations from §30.3(iii) and §30.8; see Bouwkamp (1947) and Meixner and Schäfke (1954, §3.93). … β–Ίand real eigenvalues Ξ± 1 , d , Ξ± 2 , d , , Ξ± d , d , arranged in ascending order of magnitude. …The eigenvalues of 𝐀 can be computed by methods indicated in §§3.2(vi), 3.2(vii). … β–Ίwhich yields Ξ» 4 2 ⁑ ( 10 ) = 13.97907 345 . …
    23: 12.16 Mathematical Applications
    β–ΊSleeman (1968b) considers certain orthogonality properties of the PCFs and corresponding eigenvalues. In Brazel et al. (1992) exponential asymptotics are considered in connection with an eigenvalue problem involving PCFs. …
    24: 30.18 Software
    β–Ί
  • SWF1: Ξ» n m ⁑ ( Ξ³ 2 ) .

  • β–Ί
    §30.18(ii) Eigenvalues Ξ» n m ⁑ ( Ξ³ 2 )
    25: 30.17 Tables
    §30.17 Tables
    β–Ί
  • Stratton et al. (1956) tabulates quantities closely related to Ξ» n m ⁑ ( Ξ³ 2 ) and a n , k m ⁑ ( Ξ³ 2 ) for 0 m 8 , m n 8 , 64 Ξ³ 2 64 . Precision is 7S.

  • β–Ί
  • Flammer (1957) includes 18 tables of eigenvalues, expansion coefficients, spheroidal wave functions, and other related quantities. Precision varies between 4S and 10S.

  • β–Ί
  • Van Buren et al. (1975) gives Ξ» n 0 ⁑ ( Ξ³ 2 ) , π–―π—Œ n 0 ⁑ ( x , Ξ³ 2 ) for 0 n 49 , 1600 Ξ³ 2 1600 , 1 x 1 . Precision is 8S.

  • β–Ί
  • Zhang and Jin (1996) includes 24 tables of eigenvalues, spheroidal wave functions and their derivatives. Precision varies between 6S and 8S.

  • 26: 3.2 Linear Algebra
    β–Ί
    §3.2(iv) Eigenvalues and Eigenvectors
    β–Ί β–Ί
    §3.2(v) Condition of Eigenvalues
    β–Ίhas the same eigenvalues as 𝐀 . … β–Ί
    §3.2(vii) Computation of Eigenvalues
    27: 29.5 Special Cases and Limiting Forms
    §29.5 Special Cases and Limiting Forms
    β–Ί
    29.5.1 a ν m ⁑ ( 0 ) = b ν m ⁑ ( 0 ) = m 2 ,
    β–Ί
    29.5.4 lim k 1 a ν m ⁑ ( k 2 ) = lim k 1 b ν m + 1 ⁑ ( k 2 ) = ν ⁒ ( ν + 1 ) μ 2 ,
    28: 28.36 Software
    β–Ί
    §28.36(ii) Characteristic Exponents and Eigenvalues
    29: 29.13 Graphics
    β–Ί
    §29.13(i) Eigenvalues for Lamé Polynomials
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 29.13.1: a 2 m ⁑ ( k 2 ) , b 2 m ⁑ ( k 2 ) as functions of k 2 for m = 0 , 1 , 2 ( a ’s), m = 1 , 2 ( b ’s). Magnify
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 29.13.2: a 1 m ⁑ ( k 2 ) , b 1 m ⁑ ( k 2 ) as functions of k 2 for m = 0 , 1 ( a ’s), m = 1 ( b ’s). Magnify
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 29.13.3: a 3 m ⁑ ( k 2 ) , b 3 m ⁑ ( k 2 ) as functions of k 2 for m = 0 , 1 , 2 , 3 ( a ’s), m = 1 , 2 , 3 ( b ’s). Magnify
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 29.13.4: a 4 m ⁑ ( k 2 ) , b 4 m ⁑ ( k 2 ) as functions of k 2 for m = 0 , 1 , 2 , 3 , 4 ( a ’s), m = 1 , 2 , 3 , 4 ( b ’s). Magnify
    30: 29.15 Fourier Series and Chebyshev Series
    β–ΊA convenient way of constructing the coefficients, together with the eigenvalues, is as follows. Equations (29.6.4), with p = 1 , 2 , , n , (29.6.3), and A 2 ⁒ n + 2 = 0 can be cast as an algebraic eigenvalue problem in the following way. …Let the eigenvalues of 𝐌 be H p with … β–Ί
    29.15.7 a ν 2 ⁒ m ⁑ ( k 2 ) = 1 2 ⁒ ( H m + ν ⁒ ( ν + 1 ) ⁒ k 2 ) ,
    β–Ί
    29.15.22 a ν 2 ⁒ m ⁑ ( k 2 ) = 1 2 ⁒ ( H m + ν ⁒ ( ν + 1 ) ⁒ k 2 ) ,