About the Project

ds电子游戏平台【打开网址∶3399yule.com】ds博彩平台,ds电子游艺网站【官网地址∶3399yule.com】

AdvancedHelp

Did you mean ds电子游戏平台【打开网址∶33929yule.com】ds博彩平台,ds电子游艺网站【官网地址∶33929yule.com】 ?

(0.003 seconds)

1—10 of 17 matching pages

1: 22.13 Derivatives and Differential Equations
Table 22.13.1: Derivatives of Jacobian elliptic functions with respect to variable.
d d z ( sn z ) = cn z dn z d d z ( dc z )  = k 2 sc z nc z
d d z ( cd z ) = k 2 sd z nd z d d z ( ns z )  = ds z cs z
d d z ( sd z ) = cd z nd z d d z ( ds z )  = cs z ns z
d d z ( nd z ) = k 2 sd z cd z d d z ( cs z )  = ns z ds z
22.13.11 ( d d z ds ( z , k ) ) 2 = ( ds 2 ( z , k ) k 2 ) ( k 2 + ds 2 ( z , k ) ) ,
22.13.23 d 2 d z 2 ds ( z , k ) = ( k 2 k 2 ) ds ( z , k ) + 2 ds 3 ( z , k ) ,
2: 22.6 Elementary Identities
22.6.2 1 + cs 2 ( z , k ) = k 2 + ds 2 ( z , k ) = ns 2 ( z , k ) ,
22.6.14 ns ( 2 z , k ) = ns 4 ( z , k ) k 2 2 cs ( z , k ) ds ( z , k ) ns ( z , k ) ,
22.6.15 ds ( 2 z , k ) = k 2 k 2 + ds 4 ( z , k ) 2 cs ( z , k ) ds ( z , k ) ns ( z , k ) ,
22.6.16 cs ( 2 z , k ) = cs 4 ( z , k ) k 2 2 cs ( z , k ) ds ( z , k ) ns ( z , k ) .
Table 22.6.1: Jacobi’s imaginary transformation of Jacobian elliptic functions.
sn ( i z , k ) = i sc ( z , k ) dc ( i z , k ) = dn ( z , k )
sd ( i z , k ) = i sd ( z , k ) ds ( i z , k ) = i ds ( z , k )
3: 22.4 Periods, Poles, and Zeros
Table 22.4.1: Periods and poles of Jacobian elliptic functions.
Periods z -Poles
4 K , 2 K + 2 i K cn sd nc ds
Table 22.4.2: Periods and zeros of Jacobian elliptic functions.
Periods z -Zeros
4 K , 2 K + 2 i K sd cn ds nc
Table 22.4.3: Half- or quarter-period shifts of variable for the Jacobian elliptic functions.
u
cn u k sd z i k k 1 nc z i k 1 ds z cn z cn z cn z
sd u k 1 cn z i ( k k ) 1 ds z i k 1 nc z sd z sd z sd z
ds u k nc z i k k sd z i k cn z ds z ds z ds z
4: 22.8 Addition Theorems
22.8.10 ns ( u + v ) = ns u ds v cs v ns v ds u cs u cs 2 v cs 2 u ,
22.8.11 ds ( u + v ) = ds u cs v ns v ds v cs u ns u cs 2 v cs 2 u ,
22.8.12 cs ( u + v ) = cs u ds v ns v cs v ds u ns u cs 2 v cs 2 u .
5: 22.14 Integrals
6: 22.5 Special Values
Table 22.5.1: Jacobian elliptic function values, together with derivatives or residues, for special values of the variable.
z
ds z , 1 k , 0 0 , i k k i k , 0 , 1 , 1 , 1
Table 22.5.3: Limiting forms of Jacobian elliptic functions as k 0 .
sn ( z , k ) sin z cd ( z , k ) cos z dc ( z , k ) sec z ns ( z , k ) csc z
cn ( z , k ) cos z sd ( z , k ) sin z nc ( z , k ) sec z ds ( z , k ) csc z
Table 22.5.4: Limiting forms of Jacobian elliptic functions as k 1 .
sn ( z , k ) tanh z cd ( z , k ) 1 dc ( z , k ) 1 ns ( z , k ) coth z
cn ( z , k ) sech z sd ( z , k ) sinh z nc ( z , k ) cosh z ds ( z , k ) csch z
7: 22.1 Special Notation
The functions treated in this chapter are the three principal Jacobian elliptic functions sn ( z , k ) , cn ( z , k ) , dn ( z , k ) ; the nine subsidiary Jacobian elliptic functions cd ( z , k ) , sd ( z , k ) , nd ( z , k ) , dc ( z , k ) , nc ( z , k ) , sc ( z , k ) , ns ( z , k ) , ds ( z , k ) , cs ( z , k ) ; the amplitude function am ( x , k ) ; Jacobi’s epsilon and zeta functions ( x , k ) and Z ( x | k ) . …
8: 22.15 Inverse Functions
are denoted respectively by …
22.15.22 arcds ( x , k ) = x d t ( t 2 + k 2 ) ( t 2 k 2 ) , k x < ,
9: 22.16 Related Functions
22.16.24 ( x , k ) = 0 x ( ns 2 ( t , k ) t 2 ) d t + x 1 + x cn ( x , k ) ds ( x , k ) ,
22.16.25 ( x , k ) = 0 x ( ds 2 ( t , k ) t 2 ) d t + x 1 + k 2 x cn ( x , k ) ds ( x , k ) ,
22.16.26 ( x , k ) = 0 x ( cs 2 ( t , k ) t 2 ) d t + x 1 cn ( x , k ) ds ( x , k ) .
10: 22.3 Graphics
Line graphs of the functions sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , cd ( x , k ) , sd ( x , k ) , nd ( x , k ) , dc ( x , k ) , nc ( x , k ) , sc ( x , k ) , ns ( x , k ) , ds ( x , k ) , and cs ( x , k ) for representative values of real x and real k illustrating the near trigonometric ( k = 0 ), and near hyperbolic ( k = 1 ) limits. …