About the Project

disk polynomials

AdvancedHelp

(0.001 seconds)

1—10 of 12 matching pages

1: 18.37 Classical OP’s in Two or More Variables
§18.37(i) Disk Polynomials
18.37.2 x 2 + y 2 < 1 R m , n ( α ) ( x + i y ) R j , ( α ) ( x i y ) ( 1 x 2 y 2 ) α d x d y = 0 , m j and/or n .
The following three conditions, taken together, determine R m , n ( α ) ( z ) uniquely:
18.37.3 R m , n ( α ) ( z ) = j = 0 min ( m , n ) c j z m j z ¯ n j ,
18.37.5 R m , n ( α ) ( 1 ) = 1 .
2: 18.1 Notation
  • Disk: R m , n ( α ) ( z ) .

  • 3: Bibliography C
  • J. M. Carnicer, E. Mainar, and J. M. Peña (2020) Stability properties of disk polynomials. Numer. Algorithms.
  • 4: 18.38 Mathematical Applications
    also the case β = 0 of (18.14.26), was used in de Branges’ proof of the long-standing Bieberbach conjecture concerning univalent functions on the unit disk in the complex plane. …
    5: 16.2 Definition and Analytic Properties
    Then the series (16.2.1) terminates and the generalized hypergeometric function is a polynomial in z . … If none of the a j is a nonpositive integer, then the radius of convergence of the series (16.2.1) is 1 , and outside the open disk | z | < 1 the generalized hypergeometric function is defined by analytic continuation with respect to z . …
    Polynomials
    However, when one or more of the top parameters a j is a nonpositive integer the series terminates and the generalized hypergeometric function is a polynomial in z . …
    Non-Polynomials
    6: Bibliography B
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • A. R. Barnett (1996) The Calculation of Spherical Bessel Functions and Coulomb Functions. In Computational Atomic Physics: Electron and Positron Collisions with Atoms and Ions, K. Bartschat and J. Hinze (Eds.), pp. 181–202.
  • H. Bateman (1905) A generalisation of the Legendre polynomial. Proc. London Math. Soc. (2) 3 (3), pp. 111–123.
  • G. Baxter (1961) Polynomials defined by a difference system. J. Math. Anal. Appl. 2 (2), pp. 223–263.
  • C. Brezinski and M. Redivo Zaglia (1991) Extrapolation Methods. Theory and Practice. Studies in Computational Mathematics, Vol. 2, North-Holland Publishing Co., Amsterdam.
  • 7: Bibliography L
  • H. T. Lau (1995) A Numerical Library in C for Scientists and Engineers. CRC Press, Boca Raton, FL.
  • D. J. Leeming (1989) The real zeros of the Bernoulli polynomials. J. Approx. Theory 58 (2), pp. 124–150.
  • D. H. Lehmer (1940) On the maxima and minima of Bernoulli polynomials. Amer. Math. Monthly 47 (8), pp. 533–538.
  • J. L. López and N. M. Temme (1999a) Approximation of orthogonal polynomials in terms of Hermite polynomials. Methods Appl. Anal. 6 (2), pp. 131–146.
  • J. L. López and N. M. Temme (1999b) Hermite polynomials in asymptotic representations of generalized Bernoulli, Euler, Bessel, and Buchholz polynomials. J. Math. Anal. Appl. 239 (2), pp. 457–477.
  • 8: Bibliography W
  • X.-S. Wang and R. Wong (2011) Global asymptotics of the Meixner polynomials. Asymptotic Analysis 75 (3-4), pp. 211–231.
  • X.-S. Wang and R. Wong (2012) Asymptotics of orthogonal polynomials via recurrence relations. Anal. Appl. (Singap.) 10 (2), pp. 215–235.
  • Z. Wang and R. Wong (2006) Uniform asymptotics of the Stieltjes-Wigert polynomials via the Riemann-Hilbert approach. J. Math. Pures Appl. (9) 85 (5), pp. 698–718.
  • T. Watanabe, M. Natori, and T. Oguni (Eds.) (1994) Mathematical Software for the P.C. and Work Stations – A Collection of Fortran 77 Programs. North-Holland Publishing Co., Amsterdam.
  • J. A. Wilson (1978) Hypergeometric Series, Recurrence Relations and Some New Orthogonal Polynomials. Ph.D. Thesis, University of Wisconsin, Madison, WI.
  • 9: Bibliography
  • W. A. Al-Salam and L. Carlitz (1965) Some orthogonal q -polynomials. Math. Nachr. 30, pp. 47–61.
  • M. Alam (1979) Zeros of Stieltjes and Van Vleck polynomials. Trans. Amer. Math. Soc. 252, pp. 197–204.
  • F. Alhargan and S. Judah (1995) A general mode theory for the elliptic disk microstrip antenna. IEEE Trans. Antennas and Propagation 43 (6), pp. 560–568.
  • T. M. Apostol (2008) A primer on Bernoulli numbers and polynomials. Math. Mag. 81 (3), pp. 178–190.
  • R. Askey and J. Wilson (1985) Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54 (319), pp. iv+55.
  • 10: Bibliography P
  • A. M. Parkhurst and A. T. James (1974) Zonal Polynomials of Order 1 Through 12 . In Selected Tables in Mathematical Statistics, H. L. Harter and D. B. Owen (Eds.), Vol. 2, pp. 199–388.
  • P. I. Pastro (1985) Orthogonal polynomials and some q -beta integrals of Ramanujan. J. Math. Anal. Appl. 112 (2), pp. 517–540.
  • J. Patera and P. Winternitz (1973) A new basis for the representation of the rotation group. Lamé and Heun polynomials. J. Mathematical Phys. 14 (8), pp. 1130–1139.
  • M. Petkovšek, H. S. Wilf, and D. Zeilberger (1996) A = B . A K Peters Ltd., Wellesley, MA.
  • R. Piessens and M. Branders (1972) Chebyshev polynomial expansions of the Riemann zeta function. Math. Comp. 26 (120), pp. G1–G5.