About the Project

discrete%20analog

AdvancedHelp

(0.001 seconds)

21—30 of 172 matching pages

21: 18.1 Notation
β–Ί
  • Discrete q -Hermite I: h n ⁑ ( x ; q ) .

  • β–Ί
  • Discrete q -Hermite II: h ~ n ⁑ ( x ; q ) .

  • 22: Bibliography M
    β–Ί
  • S. C. Milne (1985a) A q -analog of the F 4 5 ⁒ ( 1 ) summation theorem for hypergeometric series well-poised in π‘†π‘ˆ ⁒ ( n ) . Adv. in Math. 57 (1), pp. 14–33.
  • β–Ί
  • S. C. Milne (1985d) A q -analog of hypergeometric series well-poised in π‘†π‘ˆ ⁒ ( n ) and invariant G -functions. Adv. in Math. 58 (1), pp. 1–60.
  • β–Ί
  • S. C. Milne (1988) A q -analog of the Gauss summation theorem for hypergeometric series in U ⁒ ( n ) . Adv. in Math. 72 (1), pp. 59–131.
  • β–Ί
  • S. C. Milne (1994) A q -analog of a Whipple’s transformation for hypergeometric series in U ⁒ ( n ) . Adv. Math. 108 (1), pp. 1–76.
  • β–Ί
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 23: Bibliography D
    β–Ί
  • C. de la Vallée Poussin (1896a) Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ΞΆ ⁒ ( s ) de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Sci. Bruxelles 20, pp. 183–256 (French).
  • β–Ί
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M ⁒ x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • β–Ί
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • β–Ί
  • D. Dumont and G. Viennot (1980) A combinatorial interpretation of the Seidel generation of Genocchi numbers. Ann. Discrete Math. 6, pp. 77–87.
  • β–Ί
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 24: Bibliography S
    β–Ί
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • β–Ί
  • B. I. Schneider, X. Guan, and K. Bartschat (2016) Time propagation of partial differential equations using the short iterative Lanczos method and finite-element discrete variable representation. Adv. Quantum Chem. 72, pp. 95–127.
  • β–Ί
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • β–Ί
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • β–Ί
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • 25: 17.17 Physical Applications
    β–ΊThey were given this name because they play a role in quantum physics analogous to the role of Lie groups and special functions in classical mechanics. …
    26: 25.17 Physical Applications
    β–ΊAnalogies exist between the distribution of the zeros of ΞΆ ⁑ ( s ) on the critical line and of semiclassical quantum eigenvalues. …
    27: 18.19 Hahn Class: Definitions
    β–Ί
  • 1.

    Hahn class (or linear lattice class). These are OP’s p n ⁑ ( x ) where the role of d d x is played by Ξ” x or x or Ξ΄ x (see §18.1(i) for the definition of these operators). The Hahn class consists of four discrete and two continuous families.

  • β–Ί
  • 2.

    Wilson class (or quadratic lattice class). These are OP’s p n ⁑ ( x ) = p n ⁑ ( Ξ» ⁒ ( y ) ) ( p n ⁑ ( x ) of degree n in x , Ξ» ⁒ ( y ) quadratic in y ) where the role of the differentiation operator is played by Ξ” y Ξ” y ⁑ ( Ξ» ⁒ ( y ) ) or y y ( Ξ» ⁒ ( y ) ) or Ξ΄ y Ξ΄ y ⁑ ( Ξ» ⁒ ( y ) ) . The Wilson class consists of two discrete and two continuous families.

  • β–ΊThe Hahn class consists of four discrete families (Hahn, Krawtchouk, Meixner, and Charlier) and two continuous families (continuous Hahn and Meixner–Pollaczek). … β–Ί
    Table 18.19.1: Orthogonality properties for Hahn, Krawtchouk, Meixner, and Charlier OP’s: discrete sets, weight functions, standardizations, and parameter constraints.
    β–Ί β–Ίβ–Ί
    p n ⁑ ( x ) X w x h n
    β–Ί
    28: 24.19 Methods of Computation
    β–Ί
  • A method related to “Stickelberger codes” is applied in Buhler et al. (2001); in particular, it allows for an efficient search for the irregular pairs ( 2 ⁒ n , p ) . Discrete Fourier transforms are used in the computations. See also Crandall (1996, pp. 120–124).

  • 29: Bibliography W
    β–Ί
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • β–Ί
  • R. Wong and H. Y. Zhang (2009b) On the connection formulas of the third Painlevé transcendent. Discrete Contin. Dyn. Syst. 23 (1-2), pp. 541–560.
  • 30: 8 Incomplete Gamma and Related
    Functions