About the Project

cotangent function

AdvancedHelp

(0.001 seconds)

1—10 of 69 matching pages

1: 4.1 Special Notation
k , m , n integers.
The main functions treated in this chapter are the logarithm ln z , Ln z ; the exponential exp z , e z ; the circular trigonometric (or just trigonometric) functions sin z , cos z , tan z , csc z , sec z , cot z ; the inverse trigonometric functions arcsin z , Arcsin z , etc. ; the hyperbolic trigonometric (or just hyperbolic) functions sinh z , cosh z , tanh z , csch z , sech z , coth z ; the inverse hyperbolic functions arcsinh z , Arcsinh z , etc. …
2: 4.28 Definitions and Periodicity
4.28.7 coth z = 1 tanh z .
4.28.13 cot ( i z ) = i coth z .
3: 4.34 Derivatives and Differential Equations
4.34.4 d d z csch z = csch z coth z ,
4.34.6 d d z coth z = csch 2 z .
4.34.14 w = ( 1 / a ) coth ( a z + c ) ,
4: 4.16 Elementary Properties
§4.16 Elementary Properties
Table 4.16.1: Signs of the trigonometric functions in the four quadrants.
Quadrant sin θ , csc θ cos θ , sec θ tan θ , cot θ
Table 4.16.2: Trigonometric functions: quarter periods and change of sign.
x θ 1 2 π ± θ π ± θ 3 2 π ± θ 2 π ± θ
Table 4.16.3: Trigonometric functions: interrelations. …
sin θ = a cos θ = a tan θ = a csc θ = a sec θ = a cot θ = a
5: 4.31 Special Values and Limits
§4.31 Special Values and Limits
Table 4.31.1: Hyperbolic functions: values at multiples of 1 2 π i .
z 0 1 2 π i π i 3 2 π i
4.31.1 lim z 0 sinh z z = 1 ,
4.31.2 lim z 0 tanh z z = 1 ,
6: 4.20 Derivatives and Differential Equations
4.20.4 d d z csc z = csc z cot z ,
4.20.6 d d z cot z = csc 2 z ,
7: 4.14 Definitions and Periodicity
4.14.7 cot z = cos z sin z = 1 tan z .
The functions tan z , csc z , sec z , and cot z are meromorphic, and the locations of their zeros and poles follow from (4.14.4) to (4.14.7). …
8: 14.11 Derivatives with Respect to Degree or Order
14.11.2 ν 𝖰 ν μ ( x ) = 1 2 π 2 𝖯 ν μ ( x ) + π sin ( μ π ) sin ( ν π ) sin ( ( ν + μ ) π ) 𝖰 ν μ ( x ) 1 2 cot ( ( ν + μ ) π ) 𝖠 ν μ ( x ) + 1 2 csc ( ( ν + μ ) π ) 𝖠 ν μ ( x ) ,
9: 4.29 Graphics
§4.29(i) Real Arguments
See accompanying text
Figure 4.29.3: tanh x and coth x . Magnify
See accompanying text
Figure 4.29.4: Principal values of arctanh x and arccoth x . … Magnify
§4.29(ii) Complex Arguments
The surfaces for the complex hyperbolic and inverse hyperbolic functions are similar to the surfaces depicted in §4.15(iii) for the trigonometric and inverse trigonometric functions. …
10: 4.30 Elementary Properties
§4.30 Elementary Properties
Table 4.30.1: Hyperbolic functions: interrelations. All square roots have their principal values when the functions are real, nonnegative, and finite.
sinh θ = a cosh θ = a tanh θ = a csch θ = a sech θ = a coth θ = a
coth θ a 1 ( a 2 + 1 ) 1 / 2 a ( a 2 1 ) 1 / 2 a 1 ( 1 + a 2 ) 1 / 2 ( 1 a 2 ) 1 / 2 a