About the Project

cosecant function

AdvancedHelp

(0.004 seconds)

21—30 of 58 matching pages

21: 24.7 Integral Representations
24.7.2 B 2 n = ( 1 ) n + 1 4 n 0 t 2 n 1 e 2 π t 1 d t = ( 1 ) n + 1 2 n 0 t 2 n 1 e π t csch ( π t ) d t ,
24.7.4 B 2 n = ( 1 ) n + 1 π 0 t 2 n csch 2 ( π t ) d t ,
22: 4.40 Integrals
4.40.4 csch x d x = ln ( tanh ( 1 2 x ) ) , 0 < x < .
4.40.14 arccsch x d x = x arccsch x + arcsinh x , 0 < x < ,
23: 22.5 Special Values
§22.5 Special Values
For the other nine functions ratios can be taken; compare (22.2.10). …
§22.5(ii) Limiting Values of k
In these cases the elliptic functions degenerate into elementary trigonometric and hyperbolic functions, respectively. …
24: 23.12 Asymptotic Approximations
25: 4.19 Maclaurin Series and Laurent Series
4.19.4 csc z = 1 z + z 6 + 7 360 z 3 + 31 15120 z 5 + + ( 1 ) n 1 2 ( 2 2 n 1 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , 0 < | z | < π ,
26: 4.23 Inverse Trigonometric Functions
4.23.7 arccsc z = arcsin ( 1 / z ) ,
4.23.13 arccsc ( z ) = arccsc z ,
4.23.17 arcsec z = 1 2 π arccsc z .
27: 11.5 Integral Representations
11.5.8 ( 1 2 x ) ν 1 𝐇 ν ( x ) = 1 2 π i i i π csc ( π s ) Γ ( 3 2 + s ) Γ ( 3 2 + ν + s ) ( 1 4 x 2 ) s d s , x > 0 , ν > 1 ,
11.5.9 ( 1 2 z ) ν 1 𝐋 ν ( z ) = 1 2 π i ( 0 + ) π csc ( π s ) Γ ( 3 2 + s ) Γ ( 3 2 + ν + s ) ( 1 4 z 2 ) s d s .
28: 22.11 Fourier and Hyperbolic Series
22.11.7 ns ( z , k ) π 2 K csc ζ = 2 π K n = 0 q 2 n + 1 sin ( ( 2 n + 1 ) ζ ) 1 q 2 n + 1 ,
22.11.8 ds ( z , k ) π 2 K csc ζ = 2 π K n = 0 q 2 n + 1 sin ( ( 2 n + 1 ) ζ ) 1 + q 2 n + 1 ,
29: 19.30 Lengths of Plane Curves
19.30.6 s ( 1 / k ) = a 2 b 2 F ( ϕ , k ) = a 2 b 2 R F ( c 1 , c k 2 , c ) , k 2 = ( a 2 b 2 ) / ( a 2 + λ ) , c = csc 2 ϕ .
30: 14.11 Derivatives with Respect to Degree or Order
14.11.2 ν 𝖰 ν μ ( x ) = 1 2 π 2 𝖯 ν μ ( x ) + π sin ( μ π ) sin ( ν π ) sin ( ( ν + μ ) π ) 𝖰 ν μ ( x ) 1 2 cot ( ( ν + μ ) π ) 𝖠 ν μ ( x ) + 1 2 csc ( ( ν + μ ) π ) 𝖠 ν μ ( x ) ,