About the Project

continuous%20Hahn%20polynomials

AdvancedHelp

(0.003 seconds)

21—30 of 353 matching pages

21: 36.5 Stokes Sets
36.5.4 80 x 5 40 x 4 55 x 3 + 5 x 2 + 20 x 1 = 0 ,
36.5.7 X = 9 20 + 20 u 4 Y 2 20 u 2 + 6 u 2 sign ( z ) ,
For | Y | > Y 1 the second sheet is generated by a second solution of (36.5.6)–(36.5.9), and for | Y | < Y 1 it is generated by the roots of the polynomial equation … In Figures 36.5.136.5.6 the plane is divided into regions by the dashed curves (Stokes sets) and the continuous curves (bifurcation sets). …
22: 18.27 q -Hahn Class
§18.27 q -Hahn Class
§18.27(ii) q -Hahn Polynomials
From Big q -Jacobi to Jacobi
From Big q -Jacobi to Little q -Jacobi
Limit Relations
23: 18.38 Mathematical Applications
Approximation Theory
The terminology DVR arises as an otherwise continuous variable, such as the co-ordinate x , is replaced by its values at a finite set of zeros of appropriate OP’s resulting in expansions using functions localized at these points. … The 3 j symbol (34.2.6), with an alternative expression as a terminating F 2 3 of unit argument, can be expressed in terms of Hahn polynomials (18.20.5) or, by (18.21.1), dual Hahn polynomials. The orthogonality relations in §34.3(iv) for the 3 j symbols can be rewritten in terms of orthogonality relations for Hahn or dual Hahn polynomials as given by §§18.2(i), 18.2(iii) and Table 18.19.1 or by §18.25(iii), respectively. … …
24: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
When α is absolutely continuous, i. …
§1.18(vi) Continuous Spectra and Eigenfunction Expansions: Simple Cases
and completeness relation …
§1.18(vii) Continuous Spectra: More General Cases
25: 8 Incomplete Gamma and Related
Functions
26: 28 Mathieu Functions and Hill’s Equation
27: William P. Reinhardt
Reinhardt is a theoretical chemist and atomic physicist, who has always been interested in orthogonal polynomials and in the analyticity properties of the functions of mathematical physics. …Older work on the scattering theory of the atomic Coulomb problem led to the discovery of new classes of orthogonal polynomials relating to the spectral theory of Schrödinger operators, and new uses of old ones: this work was strongly motivated by his original ownership of a 1964 hard copy printing of the original AMS 55 NBS Handbook of Mathematical Functions. …
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    28: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 29: 23 Weierstrass Elliptic and Modular
    Functions
    30: 3.4 Differentiation
    If f ( n + 2 ) ( x ) is continuous on the interval I defined in §3.3(i), then the remainder in (3.4.1) is given by …
    B 2 5 = 1 120 ( 6 10 t 15 t 2 + 20 t 3 5 t 4 ) ,
    B 3 6 = 1 720 ( 12 8 t 45 t 2 + 20 t 3 + 15 t 4 6 t 5 ) ,
    B 2 6 = 1 60 ( 9 9 t 30 t 2 + 20 t 3 + 5 t 4 3 t 5 ) ,
    B 2 6 = 1 60 ( 9 + 9 t 30 t 2 20 t 3 + 5 t 4 + 3 t 5 ) ,