About the Project

conjugate

AdvancedHelp

(0.001 seconds)

31—40 of 78 matching pages

31: 10.63 Recurrence Relations and Derivatives
32: 18.37 Classical OP’s in Two or More Variables
18.37.3 R m , n ( α ) ( z ) = j = 0 min ( m , n ) c j z m j z ¯ n j ,
18.37.6 R m , n ( α ) ( z ) = j = 0 min ( m , n ) ( 1 ) j ( α + 1 ) m + n j ( m ) j ( n ) j ( α + 1 ) m ( α + 1 ) n j ! z m j z ¯ n j .
33: 28.12 Definitions and Basic Properties
28.12.10 me ν ( z , q ) ¯ = me ν ¯ ( z ¯ , q ¯ ) .
34: 14.15 Uniform Asymptotic Approximations
Here we introduce the envelopes of the parabolic cylinder functions U ( c , x ) , U ¯ ( c , x ) , which are defined in §12.2. For U ( c , x ) or U ¯ ( c , x ) , with c and x nonnegative, …
env U ¯ ( c , x ) = { ( U 2 ( c , x ) + U ¯ 2 ( c , x ) ) 1 / 2 , 0 x X c , 2 U ¯ ( c , x ) , X c x < ,
where x = X c denotes the largest positive root of the equation U ( c , x ) = U ¯ ( c , x ) . …
14.15.25 𝖰 ν μ ( x ) = π ( ν + 1 2 ) 1 / 4 2 ( ν + μ + 2 ) / 2 Γ ( 1 2 ν + 1 2 μ + 3 4 ) ( ζ 2 α 2 x 2 a 2 ) 1 / 4 ( U ¯ ( μ ν 1 2 , ( 2 ν + 1 ) 1 / 2 ζ ) + O ( ν 2 / 3 ) env U ¯ ( μ ν 1 2 , ( 2 ν + 1 ) 1 / 2 ζ ) ) ,
35: 36.2 Catastrophes and Canonical Integrals
36.2.23 Ψ 2 K + 1 ( 𝐱 ) = Ψ 2 K + 1 ( 𝐱 ) ¯ , x 2 m + 1 = x 2 m + 1 , x 2 m = x 2 m .
36.2.24 Ψ ( U ) ( x , y , z ) = Ψ ( U ) ( x , y , z ) ¯ , U = E , H .
36.2.28 Ψ ( E ) ( 0 , 0 , z ) = Ψ ( E ) ( 0 , 0 , z ) ¯ = 2 π π z 27 exp ( 2 27 i z 3 ) ( J 1 / 6 ( 2 27 z 3 ) + i J 1 / 6 ( 2 27 z 3 ) ) , z 0 ,
36.2.29 Ψ ( H ) ( 0 , 0 , z ) = Ψ ( H ) ( 0 , 0 , z ) ¯ = 2 1 / 3 3 exp ( 1 27 i z 3 ) Ψ ( E ) ( 0 , 0 , z 2 2 / 3 ) , < z < .
36: 36.11 Leading-Order Asymptotics
36.11.5 Ψ 3 ( 0 , y , 0 ) = Ψ 3 ( 0 , y , 0 ) ¯ = exp ( 1 4 i π ) π / y ( 1 ( i / 3 ) exp ( 3 2 i ( 2 y / 5 ) 5 / 3 ) + o ( 1 ) ) , y + .
37: Guide to Searching the DLMF
Table 2: Wildcard Examples
Query What it stands for
co$te Coordinate, conjugate, correlate,…
Table 4: Font and Accent Examples
Query Matches
U bar U ¯
38: 12.12 Integrals
12.12.4 ( U ( a , z ) ) 2 + ( U ¯ ( a , z ) ) 2 = 2 3 2 π Γ ( 1 2 a ) 0 e 2 a t + 1 2 z 2 tanh t sinh ( 2 t ) d t , a < 1 2 .
39: 13.20 Uniform Asymptotic Approximations for Large μ
13.20.17 M κ , μ ( x ) = ( 8 μ ) 1 4 ( 2 μ e ) 2 μ ( e κ + μ ) 1 2 ( κ + μ ) Φ ( κ , μ , x ) ( U ( μ κ , ζ 2 μ ) + env U ¯ ( μ κ , ζ 2 μ ) O ( μ 2 3 ) ) ,
13.20.18 W κ , μ ( x ) = ( 1 2 μ ) 1 4 ( κ + μ e ) 1 2 ( κ + μ ) Φ ( κ , μ , x ) ( U ( μ κ , ζ 2 μ ) + env U ¯ ( μ κ , ζ 2 μ ) O ( μ 2 3 ) ) ,
For the parabolic cylinder functions U and U ¯ see §12.2, and for the env functions associated with U and U ¯ see §14.15(v). …
40: 18.26 Wilson Class: Continued
18.26.6 lim t W n ( ( x + t ) 2 ; a i t , b i t , a ¯ + i t , b ¯ + i t ) ( 2 t ) n n ! = p n ( x ; a , b , a ¯ , b ¯ ) .