About the Project

complex numbers

AdvancedHelp

(0.002 seconds)

1—10 of 151 matching pages

1: 23.8 Trigonometric Series and Products
23.8.1 ( z ) + η 1 ω 1 π 2 4 ω 1 2 csc 2 ( π z 2 ω 1 ) = 2 π 2 ω 1 2 n = 1 n q 2 n 1 q 2 n cos ( n π z ω 1 ) ,
23.8.5 η 1 = π 2 2 ω 1 ( 1 6 + n = 1 csc 2 ( n π ω 3 ω 1 ) ) ,
2: 1.9 Calculus of a Complex Variable
§1.9(i) Complex Numbers
Polar Representation
Modulus and Phase
Complex Conjugate
Powers
3: 23.2 Definitions and Periodic Properties
If ω 1 and ω 3 are nonzero real or complex numbers such that ( ω 3 / ω 1 ) > 0 , then the set of points 2 m ω 1 + 2 n ω 3 , with m , n , constitutes a lattice 𝕃 with 2 ω 1 and 2 ω 3 lattice generators. … where …
23.2.13 η 1 + η 2 + η 3 = 0 ,
4: 20.12 Mathematical Applications
The space of complex tori / ( + τ ) (that is, the set of complex numbers z in which two of these numbers z 1 and z 2 are regarded as equivalent if there exist integers m , n such that z 1 z 2 = m + τ n ) is mapped into the projective space P 3 via the identification z ( θ 1 ( 2 z | τ ) , θ 2 ( 2 z | τ ) , θ 3 ( 2 z | τ ) , θ 4 ( 2 z | τ ) ) . …
5: 1.1 Special Notation
In the physics, applied maths, and engineering literature a common alternative to a ¯ is a , a being a complex number or a matrix; the Hermitian conjugate of 𝐀 is usually being denoted 𝐀 .
6: 37.6 Plane with Weight Function e x 2 y 2
As a special case of (37.2.20) define for m , n 0 the (complex) circular Hermite polynomials (first introduced by Itô (1952, §12)) by
37.6.3 S m , n ( z , z ¯ ) = { ( 1 ) n n ! L n ( m n ) ( | z | 2 ) z m n , m n , ( 1 ) m m ! L m ( n m ) ( | z | 2 ) z ¯ n m , m < n .
37.6.9 S m , n ( z , z ¯ ) = ( 1 ) m + n e | z | 2 D z ¯ m D z n e | z | 2 .
37.6.10 m , n = 0 S m , n ( z , z ¯ ) u m v n m ! n ! = e u z + v z ¯ u v .
37.6.15 lim α α 1 2 ( m + n ) R m , n α ( α 1 2 z , α 1 2 z ¯ ) = S m , n ( z , z ¯ ) ,
7: 23.12 Asymptotic Approximations
Also,
23.12.4 η 1 = π 2 4 ω 1 ( 1 3 8 q 2 + O ( q 4 ) ) ,
8: 37.1 Notation
x , y real variables.
j , k , l , m , n nonnegative integers.
9: 37.9 Jacobi Polynomials Associated with Root System A 2
37.9.1 ω ( x , y ) = ( x 2 + y 2 + 9 ) 2 + 8 ( x 3 3 x y 2 ) + 108 = ( z z ¯ + 9 ) 2 + 4 ( z 3 + z ¯ 3 ) + 108 ,
37.9.3 P m , n α ( z , z ¯ ) = const . z m z ¯ n + polynomial in  z , z ¯  of degree  < m + n ,
37.9.6 z = z ( t ) = e 2 π i ( t 1 t 2 ) / 3 + e 2 π i ( t 2 t 3 ) / 3 + e 2 π i ( t 3 t 1 ) / 3 , t = ( t 1 , t 2 , t 3 ) , t 1 + t 2 + t 3 = 0 ,
37.9.8 P m , n α ( z ( t ) , z ( t ) ¯ ) P k , l α ( z ( t ) , z ( t ) ¯ ) ¯ ( sin ( π t 1 ) sin ( π t 2 ) sin ( π t 3 ) ) 2 α + 1 d t 1 d t 2 = 0 , α > 5 6 , ( m , n ) ( k , l ) .
10: 23.5 Special Lattices
The parallelogram 0 , 2 ω 1 , 2 ω 1 + 2 ω 3 , 2 ω 3 is a square, and