About the Project

coaxial%20circles

AdvancedHelp

(0.001 seconds)

21—30 of 471 matching pages

21: 25.6 Integer Arguments
25.6.2 ζ ( 2 n ) = ( 2 π ) 2 n 2 ( 2 n ) ! | B 2 n | , n = 1 , 2 , 3 , .
25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
25.6.6 ζ ( 2 k + 1 ) = ( 1 ) k + 1 ( 2 π ) 2 k + 1 2 ( 2 k + 1 ) ! 0 1 B 2 k + 1 ( t ) cot ( π t ) d t , k = 1 , 2 , 3 , .
25.6.11 ζ ( 0 ) = 1 2 ln ( 2 π ) .
25.6.12 ζ ′′ ( 0 ) = 1 2 ( ln ( 2 π ) ) 2 + 1 2 γ 2 1 24 π 2 + γ 1 ,
22: 27.15 Chinese Remainder Theorem
Their product m has 20 digits, twice the number of digits in the data. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
23: William P. Reinhardt
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    24: 20.7 Identities
    20.7.17 θ 2 ( 2 z | 2 τ ) = A θ 1 ( 1 4 π z | τ ) θ 1 ( 1 4 π + z | τ ) ,
    20.7.18 θ 3 ( 2 z | 2 τ ) = A θ 3 ( 1 4 π z | τ ) θ 3 ( 1 4 π + z | τ ) ,
    20.7.20 B B ( τ ) = 1 / ( θ 3 ( 0 | τ ) θ 4 ( 0 | τ ) θ 3 ( 1 4 π | τ ) ) ,
    See Lawden (1989, pp. 19–20). …
    20.7.34 θ 1 ( z , q 2 ) θ 3 ( z , q 2 ) θ 1 ( z , i q ) = θ 2 ( z , q 2 ) θ 4 ( z , q 2 ) θ 2 ( z , i q ) = i 1 / 4 θ 2 ( 0 , q 2 ) θ 4 ( 0 , q 2 ) 2 .
    25: 20.10 Integrals
    20.10.1 0 x s 1 θ 2 ( 0 | i x 2 ) d x = 2 s ( 1 2 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
    20.10.2 0 x s 1 ( θ 3 ( 0 | i x 2 ) 1 ) d x = π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
    20.10.3 0 x s 1 ( 1 θ 4 ( 0 | i x 2 ) ) d x = ( 1 2 1 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 0 .
    20.10.4 0 e s t θ 1 ( β π 2 | i π t 2 ) d t = 0 e s t θ 2 ( ( 1 + β ) π 2 | i π t 2 ) d t = s sinh ( β s ) sech ( s ) ,
    20.10.5 0 e s t θ 3 ( ( 1 + β ) π 2 | i π t 2 ) d t = 0 e s t θ 4 ( β π 2 | i π t 2 ) d t = s cosh ( β s ) csch ( s ) .
    26: 6.19 Tables
  • Zhang and Jin (1996, pp. 652, 689) includes Si ( x ) , Ci ( x ) , x = 0 ( .5 ) 20 ( 2 ) 30 , 8D; Ei ( x ) , E 1 ( x ) , x = [ 0 , 100 ] , 8S.

  • Abramowitz and Stegun (1964, Chapter 5) includes the real and imaginary parts of z e z E 1 ( z ) , x = 19 ( 1 ) 20 , y = 0 ( 1 ) 20 , 6D; e z E 1 ( z ) , x = 4 ( .5 ) 2 , y = 0 ( .2 ) 1 , 6D; E 1 ( z ) + ln z , x = 2 ( .5 ) 2.5 , y = 0 ( .2 ) 1 , 6D.

  • Zhang and Jin (1996, pp. 690–692) includes the real and imaginary parts of E 1 ( z ) , ± x = 0.5 , 1 , 3 , 5 , 10 , 15 , 20 , 50 , 100 , y = 0 ( .5 ) 1 ( 1 ) 5 ( 5 ) 30 , 50 , 100 , 8S.

  • 27: Peter L. Walker
    28: Staff
  • William P. Reinhardt, University of Washington, Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, Chaps. 20, 22, 23

  • William P. Reinhardt, University of Washington, for Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, for Chaps. 20, 22, 23

  • 29: 26.10 Integer Partitions: Other Restrictions
    Table 26.10.1: Partitions restricted by difference conditions, or equivalently with parts from A j , k .
    p ( 𝒟 , n ) p ( 𝒟 2 , n ) p ( 𝒟 2 , T , n ) p ( 𝒟 3 , n )
    20 64 31 20 18
    26.10.16 p ( 𝒟 , n ) e π n / 3 ( 768 n 3 ) 1 / 4 , n .
    26.10.17 p ( 𝒟 , n ) = π k = 1 A 2 k 1 ( n ) ( 2 k 1 ) 24 n + 1 I 1 ( π 2 k 1 24 n + 1 72 ) ,
    30: 12.11 Zeros
    12.11.1 z a , s = e 3 4 π i 2 τ s ( 1 i a λ s 2 τ s + 2 a 2 λ s 2 8 a 2 λ s + 4 a 2 + 3 16 τ s 2 + O ( λ s 3 τ s 3 ) ) ,
    12.11.2 τ s = ( 2 s + 1 2 a ) π + i ln ( π 1 2 2 a 1 2 Γ ( 1 2 + a ) ) ,
    12.11.3 λ s = ln τ s 1 2 π i .
    12.11.9 u a , 1 2 1 2 μ ( 1 1.85575 708 μ 4 / 3 0.34438 34 μ 8 / 3 0.16871 5 μ 4 0.11414 μ 16 / 3 0.0808 μ 20 / 3 ) ,