About the Project

change%20of%20order%20of%20integration

AdvancedHelp

(0.002 seconds)

21—30 of 444 matching pages

21: 27.15 Chinese Remainder Theorem
Their product m has 20 digits, twice the number of digits in the data. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
22: William P. Reinhardt
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    23: 9.7 Asymptotic Expansions
    9.7.1 ζ = 2 3 z 3 / 2 .
    Numerical values of χ ( n ) are given in Table 9.7.1 for n = 1 ( 1 ) 20 to 2D.
    Table 9.7.1: χ ( n ) .
    n χ ( n ) n χ ( n ) n χ ( n ) n χ ( n )
    5 2.95 10 4.06 15 4.94 20 5.68
    9.7.20 R n ( z ) = ( 1 ) n k = 0 m 1 ( 1 ) k u k G n k ( 2 ζ ) ζ k + R m , n ( z ) ,
    9.7.23 R m , n ( z ) , S m , n ( z ) = O ( e 2 | ζ | ζ m ) , | ph z | 2 3 π .
    24: 20.11 Generalizations and Analogs
    §20.11(iii) Ramanujan’s Change of Base
    These results are called Ramanujan’s changes of base. …
    25: 6.19 Tables
  • Zhang and Jin (1996, pp. 652, 689) includes Si ( x ) , Ci ( x ) , x = 0 ( .5 ) 20 ( 2 ) 30 , 8D; Ei ( x ) , E 1 ( x ) , x = [ 0 , 100 ] , 8S.

  • Abramowitz and Stegun (1964, Chapter 5) includes the real and imaginary parts of z e z E 1 ( z ) , x = 19 ( 1 ) 20 , y = 0 ( 1 ) 20 , 6D; e z E 1 ( z ) , x = 4 ( .5 ) 2 , y = 0 ( .2 ) 1 , 6D; E 1 ( z ) + ln z , x = 2 ( .5 ) 2.5 , y = 0 ( .2 ) 1 , 6D.

  • Zhang and Jin (1996, pp. 690–692) includes the real and imaginary parts of E 1 ( z ) , ± x = 0.5 , 1 , 3 , 5 , 10 , 15 , 20 , 50 , 100 , y = 0 ( .5 ) 1 ( 1 ) 5 ( 5 ) 30 , 50 , 100 , 8S.

  • 26: Peter L. Walker
    27: Staff
  • William P. Reinhardt, University of Washington, Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, Chaps. 20, 22, 23

  • William P. Reinhardt, University of Washington, for Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, for Chaps. 20, 22, 23

  • 28: 6.16 Mathematical Applications
    By integration by parts
    6.16.4 R n ( x ) = O ( n 1 ) , n ,
    6.16.5 li ( x ) π ( x ) = O ( x ln x ) , x ,
    See accompanying text
    Figure 6.16.2: The logarithmic integral li ( x ) , together with vertical bars indicating the value of π ( x ) for x = 10 , 20 , , 1000 . Magnify
    29: 10.3 Graphics
    §10.3(i) Real Order and Variable
    §10.3(ii) Real Order, Complex Variable
    See accompanying text
    Figure 10.3.14: H 5 ( 1 ) ( x + i y ) , 20 x 10 , 4 y 4 . … Magnify 3D Help
    See accompanying text
    Figure 10.3.16: H 5.5 ( 1 ) ( x + i y ) , 20 x 10 , 4 y 4 . … Magnify 3D Help
    §10.3(iii) Imaginary Order, Real Variable
    30: 20.10 Integrals