About the Project

calculus%20of%20finite%20differences

AdvancedHelp

(0.002 seconds)

21—30 of 313 matching pages

21: Peter L. Walker
22: Staff
  • William P. Reinhardt, University of Washington, Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, Chaps. 20, 22, 23

  • William P. Reinhardt, University of Washington, for Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, for Chaps. 20, 22, 23

  • 23: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • S. V. Aksenov, M. A. Savageau, U. D. Jentschura, J. Becher, G. Soff, and P. J. Mohr (2003) Application of the combined nonlinear-condensation transformation to problems in statistical analysis and theoretical physics. Comput. Phys. Comm. 150 (1), pp. 1–20.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • G. E. Andrews (2000) Umbral calculus, Bailey chains, and pentagonal number theorems. J. Combin. Theory Ser. A 91 (1-2), pp. 464–475.
  • 24: 1.4 Calculus of One Variable
    §1.4 Calculus of One Variable
    If f ( x ) is continuous on an interval I save for a finite number of simple discontinuities, then f ( x ) is piecewise (or sectionally) continuous on I . … Similarly, assume that b b f ( x ) d x exists for all finite values of b ( > 0 ), but not necessarily when b = . …
    Fundamental Theorem of Calculus
    With a < b , the total variation of f ( x ) on a finite or infinite interval ( a , b ) is …
    25: 3.8 Nonlinear Equations
    For the computation of zeros of orthogonal polynomials as eigenvalues of finite tridiagonal matrices (§3.5(vi)), see Gil et al. (2007a, pp. 205–207). For the computation of zeros of Bessel functions, Coulomb functions, and conical functions as eigenvalues of finite parts of infinite tridiagonal matrices, see Grad and Zakrajšek (1973), Ikebe (1975), Ikebe et al. (1991), Ball (2000), and Gil et al. (2007a, pp. 205–213). …
    3.8.15 p ( x ) = ( x 1 ) ( x 2 ) ( x 20 )
    Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . …
    26: 10.75 Tables
  • Achenbach (1986) tabulates J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) , x = 0 ( .1 ) 8 , 20D or 18–20S.

  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ( z ) and K n ( z ) , for n = 2 ( 1 ) 20 , 9S.

  • Zhang and Jin (1996, p. 322) tabulates ber x , ber x , bei x , bei x , ker x , ker x , kei x , kei x , x = 0 ( 1 ) 20 , 7S.

  • Zhang and Jin (1996, p. 323) tabulates the first 20 real zeros of ber x , ber x , bei x , bei x , ker x , ker x , kei x , kei x , 8D.

  • 27: 24.20 Tables
    Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. …
    28: 24.4 Basic Properties
    §24.4(i) Difference Equations
    §24.4(iv) Finite Expansions
    24.4.39 E n ( x + h ) = ( E ( x ) + h ) n .
    For these results and also connections with the umbral calculus see Gessel (2003). …
    29: David M. Bressoud
     227, in 1980, Factorization and Primality Testing, published by Springer-Verlag in 1989, Second Year Calculus from Celestial Mechanics to Special Relativity, published by Springer-Verlag in 1992, A Radical Approach to Real Analysis, published by the Mathematical Association of America in 1994, with a second edition in 2007, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture, published by the Mathematical Association of America and Cambridge University Press in 1999, A Course in Computational Number Theory (with S. …
    30: 26.2 Basic Definitions
    Given a finite set S with permutation σ , a cycle is an ordered equivalence class of elements of S where j is equivalent to k if there exists an = ( j , k ) such that j = σ ( k ) , where σ 1 = σ and σ is the composition of σ with σ 1 . …
    Table 26.2.1: Partitions p ( n ) .
    n p ( n ) n p ( n ) n p ( n )
    3 3 20 627 37 21637