About the Project

boundary-value problems

AdvancedHelp

(0.002 seconds)

1—10 of 17 matching pages

1: 16.25 Methods of Computation
Instead a boundary-value problem needs to be formulated and solved. …
2: 12.15 Generalized Parabolic Cylinder Functions
This equation arises in the study of non-self-adjoint elliptic boundary-value problems involving an indefinite weight function. …
3: Brian D. Sleeman
4: 29.19 Physical Applications
Simply-periodic Lamé functions ( ν noninteger) can be used to solve boundary-value problems for Laplace’s equation in elliptical cones. …
5: 12.17 Physical Applications
By using instead coordinates of the parabolic cylinder ξ , η , ζ , defined by … Buchholz (1969) collects many results on boundary-value problems involving PCFs. … For this topic and other boundary-value problems see Boyd (1973), Hillion (1997), Magnus (1941), Morse and Feshbach (1953a, b), Müller (1988), Ott (1985), Rice (1954), and Shanmugam (1978). …
6: 28.33 Physical Applications
  • Boundary-values problems arising from solution of the two-dimensional wave equation in elliptical coordinates. This yields a pair of equations of the form (28.2.1) and (28.20.1), and the appropriate solution of (28.2.1) is usually a periodic solution of integer order. See §28.33(ii).

  • §28.33(ii) Boundary-Value Problems
    For a visualization see Gutiérrez-Vega et al. (2003), and for references to other boundary-value problems see: …
    7: 14.31 Other Applications
    The conical functions 𝖯 1 2 + i τ m ( x ) appear in boundary-value problems for the Laplace equation in toroidal coordinates (§14.19(i)) for regions bounded by cones, by two intersecting spheres, or by one or two confocal hyperboloids of revolution (Kölbig (1981)). …
    8: 3.7 Ordinary Differential Equations
    §3.7(iii) Taylor-Series Method: Boundary-Value Problems
    It will be observed that the present formulation of the Taylor-series method permits considerable parallelism in the computation, both for initial-value and boundary-value problems. … General methods for boundary-value problems for ordinary differential equations are given in Ascher et al. (1995). …
    9: Bibliography H
  • S. P. Hastings and J. B. McLeod (1980) A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Rational Mech. Anal. 73 (1), pp. 31–51.
  • P. Holmes and D. Spence (1984) On a Painlevé-type boundary-value problem. Quart. J. Mech. Appl. Math. 37 (4), pp. 525–538.
  • 10: Bibliography J
  • N. Joshi and A. V. Kitaev (2005) The Dirichlet boundary value problem for real solutions of the first Painlevé equation on segments in non-positive semi-axis. J. Reine Angew. Math. 583, pp. 29–86.