About the Project

binomial theorem

AdvancedHelp

(0.001 seconds)

1—10 of 22 matching pages

1: 17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
q -Binomial Theorem
2: 17.2 Calculus
§17.2(iii) Binomial Theorem
In the limit as q 1 , (17.2.35) reduces to the standard binomial theorem
3: 1.2 Elementary Algebra
Binomial Theorem
4: 4.38 Inverse Hyperbolic Functions: Further Properties
5: 37.11 Spherical Harmonics
37.11.5 N n d = dim n 0 , d = dim n d = 2 n + d 2 n + d 2 ( n + d 2 n ) , n 0 , d 2 .
6: null
error generating summary
7: 1.9 Calculus of a Complex Variable
DeMoivre’s Theorem
Jordan Curve Theorem
Cauchy’s Theorem
Liouville’s Theorem
Dominated Convergence Theorem
8: 18.18 Sums
See Szegő (1975, Theorems 3.1.5 and 5.7.1). …
§18.18(ii) Addition Theorems
Ultraspherical
Legendre
§18.18(iii) Multiplication Theorems
9: 37.14 Orthogonal Polynomials on the Simplex
37.14.8 V 𝝂 𝜶 ( 𝐱 ) = 𝝁 𝝂 ( 1 ) | 𝝂 | + | 𝝁 | ( 𝝂 𝝁 ) ( 𝜶 + 𝟏 ) 𝝂 ( | 𝜶 | + d ) | 𝝂 | + | 𝝁 | ( 𝜶 + 𝟏 ) 𝝁 ( | 𝜶 | + d ) 2 | 𝝂 | 𝐱 𝝁 , , ( 𝜶 + 𝟏 ) 𝝂 = = 1 d ( α + 1 ) ν 𝝂 0 d , | 𝝂 | = n ,
10: 12.13 Sums
§12.13(i) Addition Theorems
12.13.2 U ( a , x + y ) = e 1 2 x y 1 4 y 2 m = 0 ( a 1 2 m ) y m U ( a + m , x ) ,
12.13.3 V ( a , x + y ) = e 1 2 x y + 1 4 y 2 m = 0 ( a 1 2 m ) y m V ( a m , x ) ,
12.13.5 U ( a , x cos t + y sin t ) = e 1 4 ( x sin t y cos t ) 2 m = 0 ( a 1 2 m ) ( tan t ) m U ( m + a , x ) U ( m 1 2 , y ) , a 1 2 , 0 t 1 4 π .