About the Project

binomial theorem

AdvancedHelp

(0.001 seconds)

1—10 of 17 matching pages

1: 17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
q -Binomial Theorem
2: 17.2 Calculus
§17.2(iii) Binomial Theorem
In the limit as q 1 , (17.2.35) reduces to the standard binomial theorem
3: 1.2 Elementary Algebra
Binomial Theorem
4: 4.38 Inverse Hyperbolic Functions: Further Properties
5: 1.9 Calculus of a Complex Variable
DeMoivre’s Theorem
Jordan Curve Theorem
Cauchy’s Theorem
Liouville’s Theorem
Dominated Convergence Theorem
6: 18.18 Sums
See Szegő (1975, Theorems 3.1.5 and 5.7.1). …
§18.18(ii) Addition Theorems
Ultraspherical
Legendre
§18.18(iii) Multiplication Theorems
7: 12.13 Sums
§12.13(i) Addition Theorems
12.13.2 U ( a , x + y ) = e 1 2 x y 1 4 y 2 m = 0 ( a 1 2 m ) y m U ( a + m , x ) ,
12.13.3 V ( a , x + y ) = e 1 2 x y + 1 4 y 2 m = 0 ( a 1 2 m ) y m V ( a m , x ) ,
12.13.5 U ( a , x cos t + y sin t ) = e 1 4 ( x sin t y cos t ) 2 m = 0 ( a 1 2 m ) ( tan t ) m U ( m + a , x ) U ( m 1 2 , y ) , a 1 2 , 0 t 1 4 π .
8: 24.4 Basic Properties
24.4.12 B n ( x + h ) = k = 0 n ( n k ) B k ( x ) h n k ,
24.4.13 E n ( x + h ) = k = 0 n ( n k ) E k ( x ) h n k ,
24.4.14 E n 1 ( x ) = 2 n k = 0 n ( n k ) ( 1 2 k ) B k x n k ,
24.4.15 B 2 n = 2 n 2 2 n ( 2 2 n 1 ) k = 0 n 1 ( 2 n 1 2 k ) E 2 k ,
Raabe’s Theorem
9: 1.4 Calculus of One Variable
Mean Value Theorem
Fundamental Theorem of Calculus
First Mean Value Theorem
Second Mean Value Theorem
§1.4(vi) Taylor’s Theorem for Real Variables
10: 18.15 Asymptotic Approximations
18.15.4_5 ( sin 1 2 θ ) α + 1 2 ( cos 1 2 θ ) β + 1 2 P n ( α , β ) ( cos θ ) = π 1 2 n 1 2 cos ( 1 2 ( 2 n + α + β + 1 ) θ 1 4 ( 2 α + 1 ) π ) + O ( n 3 2 ) , α , β ,
The first term of this expansion also appears in Szegő (1975, Theorem 8.21.7). … For a bound on the error term in (18.15.10) see Szegő (1975, Theorem 8.21.11). …
18.15.12 P n ( cos θ ) = ( 2 sin θ ) 1 2 m = 0 M 1 ( 1 2 m ) ( m 1 2 n ) cos α n , m ( 2 sin θ ) m + O ( 1 n M + 1 2 ) ,
Another expansion follows from (18.15.10) by taking λ = 1 2 ; see Szegő (1975, Theorem 8.21.5). …