About the Project

beij%C3%for%20kernel

AdvancedHelp

(0.001 seconds)

11—20 of 129 matching pages

11: 10.67 Asymptotic Expansions for Large Argument
§10.67(i) ber ν x , bei ν x , ker ν x , kei ν x , and Derivatives
10.67.1 ker ν x e x / 2 ( π 2 x ) 1 2 k = 0 a k ( ν ) x k cos ( x 2 + ( ν 2 + k 4 + 1 8 ) π ) ,
The contributions of the terms in ker ν x , kei ν x , ker ν x , and kei ν x on the right-hand sides of (10.67.3), (10.67.4), (10.67.7), and (10.67.8) are exponentially small compared with the other terms, and hence can be neglected in the sense of Poincaré asymptotic expansions (§2.1(iii)). …
10.67.14 ker x kei x ker x kei x π 2 x e x 2 ( 1 2 1 8 1 x + 9 64 2 1 x 2 39 512 1 x 3 + 75 8192 2 1 x 4 + ) ,
10.67.15 ker x ker x + kei x kei x π 2 x e x 2 ( 1 2 + 3 8 1 x 15 64 2 1 x 2 + 45 512 1 x 3 + 315 8192 2 1 x 4 + ) ,
12: 10.73 Physical Applications
See Krivoshlykov (1994, Chapter 2, §2.2.10; Chapter 5, §5.2.2), Kapany and Burke (1972, Chapters 4–6; Chapter 7, §A.1), and Slater (1942, Chapter 4, §§20, 25). … The analysis of the current distribution in circular conductors leads to the Kelvin functions ber x , bei x , ker x , and kei x . …
13: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 14: 23 Weierstrass Elliptic and Modular
    Functions
    15: 10.63 Recurrence Relations and Derivatives
    §10.63(i) ber ν x , bei ν x , ker ν x , kei ν x
    ker ν x , kei ν x ;
    kei ν x , ker ν x .
    2 ker x = ker 1 x + kei 1 x ,
    Equations (10.63.6) and (10.63.7) also hold when the symbols ber and bei in (10.63.5) are replaced throughout by ker and kei , respectively. …
    16: 12.16 Mathematical Applications
    PCFs are also used in integral transforms with respect to the parameter, and inversion formulas exist for kernels containing PCFs. …
    17: 36 Integrals with Coalescing Saddles
    18: Gergő Nemes
    As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
    19: Wolter Groenevelt
    As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
    20: 33.24 Tables
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ( η , ρ ) , G 0 ( η , ρ ) , F 0 ( η , ρ ) , and G 0 ( η , ρ ) for η = 0.5 ( .5 ) 20 and ρ = 1 ( 1 ) 20 , 5S; C 0 ( η ) for η = 0 ( .05 ) 3 , 6S.