About the Project

asymptotic approximation of integrals

AdvancedHelp

(0.005 seconds)

21—30 of 76 matching pages

21: 9.14 Incomplete Airy Functions
Incomplete Airy functions are defined by the contour integral (9.5.4) when one of the integration limits is replaced by a variable real or complex parameter. For information, including asymptotic approximations, computation, and applications, see Levey and Felsen (1969), Constantinides and Marhefka (1993), and Michaeli (1996).
22: 8.22 Mathematical Applications
§8.22 Mathematical Applications
plays a fundamental role in re-expansions of remainder terms in asymptotic expansions, including exponentially-improved expansions and a smooth interpretation of the Stokes phenomenon. …
8.22.3 ζ x ( s ) = k = 1 k s P ( s , k x ) , s > 1 .
For further information on ζ x ( s ) , including zeros and uniform asymptotic approximations, see Kölbig (1970, 1972a) and Dunster (2006). The Debye functions 0 x t n ( e t 1 ) 1 d t and x t n ( e t 1 ) 1 d t are closely related to the incomplete Riemann zeta function and the Riemann zeta function. …
23: 35.10 Methods of Computation
For large 𝐓 the asymptotic approximations referred to in §35.7(iv) are available. Other methods include numerical quadrature applied to double and multiple integral representations. See Yan (1992) for the F 1 1 and F 1 2 functions of matrix argument in the case m = 2 , and Bingham et al. (1992) for Monte Carlo simulation on 𝐎 ( m ) applied to a generalization of the integral (35.5.8). Koev and Edelman (2006) utilizes combinatorial identities for the zonal polynomials to develop computational algorithms for approximating the series expansion (35.8.1). …
24: 2.11 Remainder Terms; Stokes Phenomenon
§2.11(i) Numerical Use of Asymptotic Expansions
§2.11(ii) Connection Formulas
§2.11(iii) Exponentially-Improved Expansions
§2.11(vi) Direct Numerical Transformations
25: 29.16 Asymptotic Expansions
§29.16 Asymptotic Expansions
Hargrave and Sleeman (1977) give asymptotic approximations for Lamé polynomials and their eigenvalues, including error bounds. The approximations for Lamé polynomials hold uniformly on the rectangle 0 z K , 0 z K , when n k and n k assume large real values. The approximating functions are exponential, trigonometric, and parabolic cylinder functions.
26: 35.9 Applications
These references all use results related to the integral formulas (35.4.7) and (35.5.8). For applications of the integral representation (35.5.3) see McFarland and Richards (2001, 2002) (statistical estimation of misclassification probabilities for discriminating between multivariate normal populations). The asymptotic approximations of §35.7(iv) are applied in numerous statistical contexts in Butler and Wood (2002). In chemistry, Wei and Eichinger (1993) expresses the probability density functions of macromolecules in terms of generalized hypergeometric functions of matrix argument, and develop asymptotic approximations for these density functions. …
27: 6.18 Methods of Computation
Zeros of Ci ( x ) and si ( x ) can be computed to high precision by Newton’s rule (§3.8(ii)), using values supplied by the asymptotic expansion (6.13.2) as initial approximations. …
28: 12.16 Mathematical Applications
PCFs are used as basic approximating functions in the theory of contour integrals with a coalescing saddle point and an algebraic singularity, and in the theory of differential equations with two coalescing turning points; see §§2.4(vi) and 2.8(vi). … In Brazel et al. (1992) exponential asymptotics are considered in connection with an eigenvalue problem involving PCFs. … Integral transforms and sampling expansions are considered in Jerri (1982).
29: 36.15 Methods of Computation
This can be carried out by direct numerical evaluation of canonical integrals along a finite segment of the real axis including all real critical points of Φ , with contributions from the contour outside this range approximated by the first terms of an asymptotic series associated with the endpoints. …
30: 13.20 Uniform Asymptotic Approximations for Large μ
§13.20 Uniform Asymptotic Approximations for Large μ
§13.20(i) Large μ , Fixed κ
These approximations are in terms of Airy functions. …