About the Project

asymptotic%20forms%20for%20small%20q

AdvancedHelp

(0.004 seconds)

11—20 of 613 matching pages

11: 36.5 Stokes Sets
ā–ŗStokes sets are surfaces (codimension one) in š± space, across which ĪØ K ā” ( š± ; k ) or ĪØ ( U ) ā” ( š± ; k ) acquires an exponentially-small asymptotic contribution (in k ), associated with a complex critical point of Ī¦ K or Ī¦ ( U ) . … ā–ŗThe Stokes set takes different forms for z = 0 , z < 0 , and z > 0 . … ā–ŗ
36.5.4 80 ā¢ x 5 40 ā¢ x 4 55 ā¢ x 3 + 5 ā¢ x 2 + 20 ā¢ x 1 = 0 ,
ā–ŗ
36.5.7 X = 9 20 + 20 ā¢ u 4 Y 2 20 ā¢ u 2 + 6 ā¢ u 2 ā¢ sign ā” ( z ) ,
ā–ŗRed and blue numbers in each region correspond, respectively, to the numbers of real and complex critical points that contribute to the asymptotics of the canonical integral away from the bifurcation sets. …
12: 28.8 Asymptotic Expansions for Large q
§28.8 Asymptotic Expansions for Large q
ā–ŗ
§28.8(ii) Sips’ Expansions
ā–ŗ
§28.8(iii) Goldstein’s Expansions
ā–ŗ
Barrett’s Expansions
ā–ŗ
13: 10.75 Tables
ā–ŗ
  • Achenbach (1986) tabulates J 0 ā” ( x ) , J 1 ā” ( x ) , Y 0 ā” ( x ) , Y 1 ā” ( x ) , x = 0 ā¢ ( .1 ) ā¢ 8 , 20D or 18–20S.

  • ā–ŗ
  • Olver (1960) tabulates j n , m , J n ā” ( j n , m ) , j n , m , J n ā” ( j n , m ) , y n , m , Y n ā” ( y n , m ) , y n , m , Y n ā” ( y n , m ) , n = 0 ā¢ ( 1 2 ) ā¢ 20 ā¤ 1 2 , m = 1 ā¢ ( 1 ) ā¢ 50 , 8D. Also included are tables of the coefficients in the uniform asymptotic expansions of these zeros and associated values as n ; see §10.21(viii), and more fully Olver (1954).

  • ā–ŗ
  • Bickley et al. (1952) tabulates x n ā¢ I n ā” ( x ) or e x ā¢ I n ā” ( x ) , x n ā¢ K n ā” ( x ) or e x ā¢ K n ā” ( x ) , n = 2 ā¢ ( 1 ) ā¢ 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ā” ( x ) , K n ā” ( x ) , n = 0 ā¢ ( 1 ) ā¢ 20 , x = 0 or 0.1 ā¢ ( .1 ) ā¢ 20 , 10S.

  • ā–ŗ
  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ā” ( z ) and K n ā” ( z ) , for n = 2 ā¢ ( 1 ) ā¢ 20 , 9S.

  • ā–ŗ
  • Olver (1960) tabulates a n , m , š—ƒ n ā” ( a n , m ) , b n , m , š—’ n ā” ( b n , m ) , n = 1 ā¢ ( 1 ) ā¢ 20 , m = 1 ā¢ ( 1 ) ā¢ 50 , 8D. Also included are tables of the coefficients in the uniform asymptotic expansions of these zeros and associated values as n .

  • 14: 26.9 Integer Partitions: Restricted Number and Part Size
    ā–ŗEquations (26.9.2)–(26.9.3) are examples of closed forms that can be computed explicitly for any positive integer k . … ā–ŗis the Gaussian polynomial (or q -binomial coefficient); see also §§17.2(i)17.2(ii). …It is also assumed everywhere that | q | < 1 . … ā–ŗAlso, when | x ā¢ q | < 1 ā–ŗ
    §26.9(iv) Limiting Form
    15: 3.8 Nonlinear Equations
    ā–ŗSometimes the equation takes the formā–ŗThe method converges locally and quadratically, except when the wanted quadratic factor is a multiple factor of q ā” ( z ) . … ā–ŗInitial approximations to the zeros can often be found from asymptotic or other approximations to f ā¢ ( z ) , or by application of the phase principle or Rouché’s theorem; see §1.10(iv). … ā–ŗConsider x = 20 and j = 19 . We have p ā” ( 20 ) = 19 ! and a 19 = 1 + 2 + ā‹Æ + 20 = 210 . …
    16: Bibliography B
    ā–ŗ
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • ā–ŗ
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • ā–ŗ
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • ā–ŗ
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • ā–ŗ
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • 17: 26.10 Integer Partitions: Other Restrictions
    ā–ŗ
    Table 26.10.1: Partitions restricted by difference conditions, or equivalently with parts from A j , k .
    ā–ŗ ā–ŗā–ŗā–ŗ
    p ā” ( š’Ÿ , n ) p ā” ( š’Ÿ ā¢ 2 , n ) p ā” ( š’Ÿ ā¢ 2 , T , n ) p ā” ( š’Ÿ ā¢ 3 , n )
    20 64 31 20 18
    ā–ŗ
    ā–ŗThroughout this subsection it is assumed that | q | < 1 . ā–ŗ
    26.10.2 n = 0 p ā” ( š’Ÿ , n ) ā¢ q n = j = 1 ( 1 + q j ) = j = 1 1 1 q 2 ā¢ j 1 = 1 + m = 1 q m ā¢ ( m + 1 ) / 2 ( 1 q ) ā¢ ( 1 q 2 ) ā¢ ā‹Æ ā¢ ( 1 q m ) = 1 + m = 1 q m ā¢ ( 1 + q ) ā¢ ( 1 + q 2 ) ā¢ ā‹Æ ā¢ ( 1 + q m 1 ) ,
    ā–ŗ
    §26.10(v) Limiting Form
    ā–ŗ
    26.10.16 p ā” ( š’Ÿ , n ) e Ļ€ ā¢ n / 3 ( 768 ā¢ n 3 ) 1 / 4 , n .
    18: 2.11 Remainder Terms; Stokes Phenomenon
    ā–ŗ
    §2.11(i) Numerical Use of Asymptotic Expansions
    ā–ŗā–ŗā–ŗFor example, using double precision d 20 is found to agree with (2.11.31) to 13D. … ā–ŗTheir extrapolation is based on assumed forms of remainder terms that may not always be appropriate for asymptotic expansions. …
    19: Bibliography K
    ā–ŗ
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • ā–ŗ
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • ā–ŗ
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • ā–ŗ
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • ā–ŗ
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • 20: Bibliography L
    ā–ŗ
  • H. A. Lauwerier (1974) Asymptotic Analysis. Mathematical Centre Tracts, Mathematisch Centrum, Amsterdam.
  • ā–ŗ
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright Ļ‰ function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • ā–ŗ
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • ā–ŗ
  • J. L. López (2001) Uniform asymptotic expansions of symmetric elliptic integrals. Constr. Approx. 17 (4), pp. 535–559.
  • ā–ŗ
  • J. N. Lyness (1971) Adjusted forms of the Fourier coefficient asymptotic expansion and applications in numerical quadrature. Math. Comp. 25 (113), pp. 87–104.