About the Project

asymptotic%20expansions%20for%20large%20variable

AdvancedHelp

(0.005 seconds)

11—13 of 13 matching pages

11: Bibliography D
  • R. B. Dingle (1973) Asymptotic Expansions: Their Derivation and Interpretation. Academic Press, London-New York.
  • T. M. Dunster (1986) Uniform asymptotic expansions for prolate spheroidal functions with large parameters. SIAM J. Math. Anal. 17 (6), pp. 1495–1524.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • T. M. Dunster (2001b) Uniform asymptotic expansions for Charlier polynomials. J. Approx. Theory 112 (1), pp. 93–133.
  • T. M. Dunster (2003b) Uniform asymptotic expansions for associated Legendre functions of large order. Proc. Roy. Soc. Edinburgh Sect. A 133 (4), pp. 807–827.
  • 12: Bibliography L
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • J. L. López (2001) Uniform asymptotic expansions of symmetric elliptic integrals. Constr. Approx. 17 (4), pp. 535–559.
  • J. L. López (1999) Asymptotic expansions of the Whittaker functions for large order parameter. Methods Appl. Anal. 6 (2), pp. 249–256.
  • J. L. López and N. M. Temme (2010b) Large degree asymptotics of generalized Bernoulli and Euler polynomials. J. Math. Anal. Appl. 363 (1), pp. 197–208.
  • D. Ludwig (1966) Uniform asymptotic expansions at a caustic. Comm. Pure Appl. Math. 19, pp. 215–250.
  • 13: 18.40 Methods of Computation
    Usually, however, other methods are more efficient, especially the numerical solution of difference equations (§3.6) and the application of uniform asymptotic expansions (when available) for OP’s of large degree. For applications in which the OP’s appear only as terms in series expansions (compare §18.18(i)) the need to compute them can be avoided altogether by use instead of Clenshaw’s algorithm (§3.11(ii)) and its straightforward generalization to OP’s other than Chebyshev. …
    18.40.5 F N ( z ) = 1 μ 0 n = 1 N w n z x n .
    Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . …
    18.40.9 x ( t , N ) = x 1 , N 1 + a 1 ( t 1 ) 1 + a 2 ( t 2 ) 1 + a N 1 ( t ( N 1 ) ) 1 , t ( 0 , ) ,