About the Project

associated Legendre functions

AdvancedHelp

(0.011 seconds)

11—20 of 66 matching pages

11: 14.32 Methods of Computation
§14.32 Methods of Computation
12: 14.5 Special Values
14.5.9 𝑸 0 ( x ) = 1 2 ln ( x + 1 x 1 ) ,
14.5.10 𝑸 1 ( x ) = x 2 ln ( x + 1 x 1 ) 1 .
§14.5(v) μ = 0 , ν = ± 1 2
14.5.30 𝑸 2 ( x ) = 3 x 2 1 8 ln ( x + 1 x 1 ) 3 4 x .
13: 14.7 Integer Degree and Order
§14.7 Integer Degree and Order
§14.7(i) μ = 0
§14.7(ii) Rodrigues-Type Formulas
§14.7(iv) Generating Functions
14: 14.4 Graphics
§14.4(iii) Associated Legendre Functions: 2D Graphs
§14.4(iv) Associated Legendre Functions: 3D Surfaces
See accompanying text
Figure 14.4.32: 𝑸 0 μ ( x ) , 0 μ 10 , 1 < x < 10 . Magnify 3D Help
15: 14.8 Behavior at Singularities
14.8.9 𝑸 ν ( x ) = ln ( x 1 ) 2 Γ ( ν + 1 ) + 1 2 ln 2 γ ψ ( ν + 1 ) Γ ( ν + 1 ) + O ( ( x 1 ) ln ( x 1 ) ) , ν 1 , 2 , 3 , ,
14.8.11 𝑸 ν μ ( x ) Γ ( μ ) 2 Γ ( ν + μ + 1 ) ( 2 x 1 ) μ / 2 , μ > 0 , ν + μ 1 , 2 , 3 , .
14.8.15 𝑸 ν μ ( x ) π 1 / 2 Γ ( ν + 3 2 ) ( 2 x ) ν + 1 , ν 3 2 , 5 2 , 7 2 , ,
14.8.16 𝑸 n ( 1 / 2 ) μ ( x ) π 1 / 2 Γ ( μ + n + 1 2 ) n ! Γ ( μ n + 1 2 ) ( 2 x ) n + ( 1 / 2 ) , n = 1 , 2 , 3 , , μ n + 1 2 0 , 1 , 2 , .
16: 14.24 Analytic Continuation
§14.24 Analytic Continuation
14.24.1 P ν μ ( z e s π i ) = e s ν π i P ν μ ( z ) + 2 i sin ( ( ν + 1 2 ) s π ) e s π i / 2 cos ( ν π ) Γ ( μ ν ) 𝑸 ν μ ( z ) ,
14.24.2 𝑸 ν μ ( z e s π i ) = ( 1 ) s e s ν π i 𝑸 ν μ ( z ) ,
14.24.4 𝑸 ν , s μ ( z ) = e s μ π i 𝑸 ν μ ( z ) π i sin ( s μ π ) sin ( μ π ) Γ ( ν μ + 1 ) P ν μ ( z ) ,
For fixed z , other than ± 1 or , each branch of P ν μ ( z ) and 𝑸 ν μ ( z ) is an entire function of each parameter ν and μ . …
17: 14.10 Recurrence Relations and Derivatives
§14.10 Recurrence Relations and Derivatives
14.10.6 P ν μ + 2 ( x ) + 2 ( μ + 1 ) x ( x 2 1 ) 1 / 2 P ν μ + 1 ( x ) ( ν μ ) ( ν + μ + 1 ) P ν μ ( x ) = 0 ,
14.10.7 ( x 2 1 ) 1 / 2 P ν μ + 1 ( x ) ( ν μ + 1 ) P ν + 1 μ ( x ) + ( ν + μ + 1 ) x P ν μ ( x ) = 0 .
18: 14.6 Integer Order
§14.6 Integer Order
19: 14.12 Integral Representations
§14.12(ii) 1 < x <
14.12.5 P ν μ ( x ) = ( x 2 1 ) μ / 2 Γ ( μ ) 1 x P ν ( t ) ( x t ) μ 1 d t , μ > 0 .
14.12.6 𝑸 ν μ ( x ) = π 1 / 2 ( x 2 1 ) μ / 2 2 μ Γ ( μ + 1 2 ) Γ ( ν μ + 1 ) 0 ( sinh t ) 2 μ ( x + ( x 2 1 ) 1 / 2 cosh t ) ν + μ + 1 d t , ( ν + 1 ) > μ > 1 2 .
14.12.12 𝑸 n m ( x ) = 1 ( n m ) ! P n m ( x ) x d t ( t 2 1 ) ( P n m ( t ) ) 2 , n m .
20: 14.14 Continued Fractions
§14.14 Continued Fractions
14.14.1 1 2 ( x 2 1 ) 1 / 2 P ν μ ( x ) P ν μ 1 ( x ) = x 0 y 0 + x 1 y 1 + x 2 y 2 + ,
14.14.3 ( ν μ ) Q ν μ ( x ) Q ν 1 μ ( x ) = x 0 y 0 x 1 y 1 x 2 y 2 , ν μ ,