About the Project

as Bernoulli or Euler polynomials

AdvancedHelp

(0.008 seconds)

11—20 of 148 matching pages

11: 24.19 Methods of Computation
§24.19(i) Bernoulli and Euler Numbers and Polynomials
For algorithms for computing B n , E n , B n ( x ) , and E n ( x ) see Spanier and Oldham (1987, pp. 37, 41, 171, and 179–180).
§24.19(ii) Values of B n Modulo p
We list here three methods, arranged in increasing order of efficiency.
  • Tanner and Wagstaff (1987) derives a congruence ( mod p ) for Bernoulli numbers in terms of sums of powers. See also §24.10(iii).

  • 12: 24.9 Inequalities
    §24.9 Inequalities
    24.9.1 | B 2 n | > | B 2 n ( x ) | , 1 > x > 0 ,
    24.9.2 ( 2 2 1 2 n ) | B 2 n | | B 2 n ( x ) B 2 n | , 1 x 0 .
    24.9.3 4 n | E 2 n | > ( 1 ) n E 2 n ( x ) > 0 ,
    24.9.5 4 ( 2 n 1 ) ! π 2 n 2 2 n 1 2 2 n 2 > ( 1 ) n E 2 n 1 ( x ) > 0 .
    13: 24.5 Recurrence Relations
    §24.5 Recurrence Relations
    24.5.1 k = 0 n 1 ( n k ) B k ( x ) = n x n 1 , n = 2 , 3 , ,
    24.5.2 k = 0 n ( n k ) E k ( x ) + E n ( x ) = 2 x n , n = 1 , 2 , .
    §24.5(ii) Other Identities
    §24.5(iii) Inversion Formulas
    14: 24 Bernoulli and Euler Polynomials
    Chapter 24 Bernoulli and Euler Polynomials
    15: 24.7 Integral Representations
    §24.7(i) Bernoulli and Euler Numbers
    24.7.3 B 2 n = ( 1 ) n + 1 π 1 2 1 2 n 0 t 2 n sech 2 ( π t ) d t ,
    §24.7(ii) Bernoulli and Euler Polynomials
    24.7.9 E 2 n ( x ) = ( 1 ) n 4 0 sin ( π x ) cosh ( π t ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n d t ,
    24.7.10 E 2 n + 1 ( x ) = ( 1 ) n + 1 4 0 cos ( π x ) sinh ( π t ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n + 1 d t .
    16: 24.12 Zeros
    §24.12(i) Bernoulli Polynomials: Real Zeros
    §24.12(iii) Complex Zeros
    For complex zeros of Bernoulli and Euler polynomials, see Delange (1987) and Dilcher (1988). A related topic is the irreducibility of Bernoulli and Euler polynomials. …
    §24.12(iv) Multiple Zeros
    17: 24.6 Explicit Formulas
    §24.6 Explicit Formulas
    24.6.1 B 2 n = k = 2 2 n + 1 ( 1 ) k 1 k ( 2 n + 1 k ) j = 1 k 1 j 2 n ,
    24.6.7 B n ( x ) = k = 0 n 1 k + 1 j = 0 k ( 1 ) j ( k j ) ( x + j ) n ,
    24.6.8 E n ( x ) = 1 2 n k = 1 n + 1 j = 0 k 1 ( 1 ) j ( n + 1 k ) ( x + j ) n .
    24.6.9 B n = k = 0 n 1 k + 1 j = 0 k ( 1 ) j ( k j ) j n ,
    18: 24.11 Asymptotic Approximations
    §24.11 Asymptotic Approximations
    24.11.1 ( 1 ) n + 1 B 2 n 2 ( 2 n ) ! ( 2 π ) 2 n ,
    24.11.2 ( 1 ) n + 1 B 2 n 4 π n ( n π e ) 2 n ,
    24.11.4 ( 1 ) n E 2 n 8 n π ( 4 n π e ) 2 n .
    24.11.6 ( 1 ) ( n + 1 ) / 2 π n + 1 4 ( n ! ) E n ( x ) { sin ( π x ) , n  even , cos ( π x ) , n  odd ,
    19: Karl Dilcher
    Over the years he authored or coauthored numerous papers on Bernoulli numbers and related topics, and he maintains a large on-line bibliography on the subject. …
  • 20: 24.8 Series Expansions
    §24.8(i) Fourier Series
    If n = 1 , 2 , and 0 x 1 , then
    24.8.4 E 2 n ( x ) = ( 1 ) n 4 ( 2 n ) ! π 2 n + 1 k = 0 sin ( ( 2 k + 1 ) π x ) ( 2 k + 1 ) 2 n + 1 ,
    24.8.5 E 2 n 1 ( x ) = ( 1 ) n 4 ( 2 n 1 ) ! π 2 n k = 0 cos ( ( 2 k + 1 ) π x ) ( 2 k + 1 ) 2 n .
    §24.8(ii) Other Series