About the Project

as%20eigenfunctions%20of%20a%20q-difference%20operator

AdvancedHelp

(0.005 seconds)

21—30 of 904 matching pages

21: 6.20 Approximations
  • Cody and Thacher (1968) provides minimax rational approximations for E 1 ( x ) , with accuracies up to 20S.

  • Cody and Thacher (1969) provides minimax rational approximations for Ei ( x ) , with accuracies up to 20S.

  • MacLeod (1996b) provides rational approximations for the sine and cosine integrals and for the auxiliary functions f and g , with accuracies up to 20S.

  • Luke (1969b, pp. 41–42) gives Chebyshev expansions of Ein ( a x ) , Si ( a x ) , and Cin ( a x ) for 1 x 1 , a . The coefficients are given in terms of series of Bessel functions.

  • Luke (1969b, pp. 402, 410, and 415–421) gives main diagonal Padé approximations for Ein ( z ) , Si ( z ) , Cin ( z ) (valid near the origin), and E 1 ( z ) (valid for large | z | ); approximate errors are given for a selection of z -values.

  • 22: 24.20 Tables
    Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. …
    23: Bibliography R
  • H. A. Ragheb, L. Shafai, and M. Hamid (1991) Plane wave scattering by a conducting elliptic cylinder coated by a nonconfocal dielectric. IEEE Trans. Antennas and Propagation 39 (2), pp. 218–223.
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • S. Ritter (1998) On the computation of Lamé functions, of eigenvalues and eigenfunctions of some potential operators. Z. Angew. Math. Mech. 78 (1), pp. 66–72.
  • G. Rota, D. Kahaner, and A. Odlyzko (1973) On the foundations of combinatorial theory. VIII. Finite operator calculus. J. Math. Anal. Appl. 42, pp. 684–760.
  • 24: 27.2 Functions
    Functions in this section derive their properties from the fundamental theorem of arithmetic, which states that every integer n > 1 can be represented uniquely as a product of prime powers, …Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … and if ϕ ( n ) is the smallest positive integer f such that a f 1 ( mod n ) , then a is a primitive root mod n . …Such a set is a reduced residue system modulo n . … where p a is a prime power with a 1 ; otherwise Λ ( n ) = 0 . …
    25: 7.24 Approximations
  • Cody (1969) provides minimax rational approximations for erf x and erfc x . The maximum relative precision is about 20S.

  • Cody (1968) gives minimax rational approximations for the Fresnel integrals (maximum relative precision 19S); for a Fortran algorithm and comments see Snyder (1993).

  • Cody et al. (1970) gives minimax rational approximations to Dawson’s integral F ( x ) (maximum relative precision 20S–22S).

  • Luke (1969b, vol. 2, pp. 422–435) gives main diagonal Padé approximations for F ( z ) , erf z , erfc z , C ( z ) , and S ( z ) ; approximate errors are given for a selection of z -values.

  • 26: Bibliography V
  • Van Buren (website) Mathieu and Spheroidal Wave Functions: Fortran Programs for their Accurate Calculation
  • N. Ja. Vilenkin and A. U. Klimyk (1991) Representation of Lie Groups and Special Functions. Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms. Mathematics and its Applications (Soviet Series), Vol. 72, Kluwer Academic Publishers Group, Dordrecht.
  • N. Ja. Vilenkin and A. U. Klimyk (1992) Representation of Lie Groups and Special Functions. Volume 3: Classical and Quantum Groups and Special Functions. Mathematics and its Applications (Soviet Series), Vol. 75, Kluwer Academic Publishers Group, Dordrecht.
  • N. Ja. Vilenkin and A. U. Klimyk (1993) Representation of Lie Groups and Special Functions. Volume 2: Class I Representations, Special Functions, and Integral Transforms. Mathematics and its Applications (Soviet Series), Vol. 74, Kluwer Academic Publishers Group, Dordrecht.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • 27: 25.12 Polylogarithms
    The notation Li 2 ( z ) was introduced in Lewin (1981) for a function discussed in Euler (1768) and called the dilogarithm in Hill (1828): … In the complex plane Li 2 ( z ) has a branch point at z = 1 . … valid when s > 0 , a > 0 or s > 1 , a = 0 . When s = 2 and e 2 π i a = z , (25.12.13) becomes (25.12.4). … For a uniform asymptotic approximation for F s ( x ) see Temme and Olde Daalhuis (1990).
    28: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • W. Magnus and S. Winkler (1966) Hill’s Equation. Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 29: 9.18 Tables
  • Miller (1946) tabulates Ai ( x ) , Ai ( x ) for x = 20 ( .01 ) 2 ; log 10 Ai ( x ) , Ai ( x ) / Ai ( x ) for x = 0 ( .1 ) 25 ( 1 ) 75 ; Bi ( x ) , Bi ( x ) for x = 10 ( .1 ) 2.5 ; log 10 Bi ( x ) , Bi ( x ) / Bi ( x ) for x = 0 ( .1 ) 10 ; M ( x ) , N ( x ) , θ ( x ) , ϕ ( x ) (respectively F ( x ) , G ( x ) , χ ( x ) , ψ ( x ) ) for x = 80 ( 1 ) 30 ( .1 ) 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • Zhang and Jin (1996, p. 337) tabulates Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) for x = 0 ( 1 ) 20 to 8S and for x = 20 ( 1 ) 0 to 9D.

  • Miller (1946) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 . Precision is 8D. Entries for k = 1 ( 1 ) 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • Sherry (1959) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; 20S.

  • Zhang and Jin (1996, p. 339) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 ; 8D.

  • 30: Tom M. Apostol
    Apostol was born on August 20, 1923. He received his bachelor of science in chemical engineering in 1944 and a master’s degree in mathematics in 1946, both from the University of Washington, Seattle. … He was a visiting professor at the University of Patras in Greece in 1978, and was elected a Corresponding Member of the Academy of Athens in 2001 (where he delivered his inaugural lecture in Greek). … He was also a coauthor of three textbooks written to accompany the physics telecourse The Mechanical Universe …and Beyond. … He additionally served as a visiting lecturer for the MAA, and as a member of the MAA Board of Governors. …