About the Project

argument%20a%20fraction

AdvancedHelp

(0.004 seconds)

6 matching pages

1: Bibliography K
  • D. Karp, A. Savenkova, and S. M. Sitnik (2007) Series expansions for the third incomplete elliptic integral via partial fraction decompositions. J. Comput. Appl. Math. 207 (2), pp. 331–337.
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • M. Kodama (2008) Algorithm 877: A subroutine package for cylindrical functions of complex order and nonnegative argument. ACM Trans. Math. Software 34 (4), pp. Art. 22, 21.
  • M. Kodama (2011) Algorithm 912: a module for calculating cylindrical functions of complex order and complex argument. ACM Trans. Math. Software 37 (4), pp. Art. 47, 25.
  • 2: Bibliography M
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • K. S. Miller and B. Ross (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York.
  • R. Morris (1979) The dilogarithm function of a real argument. Math. Comp. 33 (146), pp. 778–787.
  • C. Mortici (2011a) A new Stirling series as continued fraction. Numer. Algorithms 56 (1), pp. 17–26.
  • C. Mortici (2013a) A continued fraction approximation of the gamma function. J. Math. Anal. Appl. 402 (2), pp. 405–410.
  • 3: 20.11 Generalizations and Analogs
    It is a discrete analog of theta functions. If both m , n are positive, then G ( m , n ) allows inversion of its arguments as a modular transformation (compare (23.15.3) and (23.15.4)): … Ramanujan’s theta function f ( a , b ) is defined by … In the case z = 0 identities for theta functions become identities in the complex variable q , with | q | < 1 , that involve rational functions, power series, and continued fractions; see Adiga et al. (1985), McKean and Moll (1999, pp. 156–158), and Andrews et al. (1988, §10.7). … A further development on the lines of Neville’s notation (§20.1) is as follows. …
    4: Bibliography G
  • I. Gargantini and P. Henrici (1967) A continued fraction algorithm for the computation of higher transcendental functions in the complex plane. Math. Comp. 21 (97), pp. 18–29.
  • A. Gervois and H. Navelet (1984) Some integrals involving three Bessel functions when their arguments satisfy the triangle inequalities. J. Math. Phys. 25 (11), pp. 3350–3356.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • E. S. Ginsberg and D. Zaborowski (1975) Algorithm 490: The Dilogarithm function of a real argument [S22]. Comm. ACM 18 (4), pp. 200–202.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 5: Bibliography R
  • Yu. L. Ratis and P. Fernández de Córdoba (1993) A code to calculate (high order) Bessel functions based on the continued fractions method. Comput. Phys. Comm. 76 (3), pp. 381–388.
  • G. F. Remenets (1973) Computation of Hankel (Bessel) functions of complex index and argument by numerical integration of a Schläfli contour integral. Ž. Vyčisl. Mat. i Mat. Fiz. 13, pp. 1415–1424, 1636.
  • S. R. Rengarajan and J. E. Lewis (1980) Mathieu functions of integral orders and real arguments. IEEE Trans. Microwave Theory Tech. 28 (3), pp. 276–277.
  • D. St. P. Richards (2004) Total positivity properties of generalized hypergeometric functions of matrix argument. J. Statist. Phys. 116 (1-4), pp. 907–922.
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.
  • 6: Bibliography W
  • J. Walker (1989) A drop of water becomes a gateway into the world of catastrophe optics. Scientific American 261, pp. 120–123.
  • H. S. Wall (1948) Analytic Theory of Continued Fractions. D. Van Nostrand Company, Inc., New York.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • G. Wei and B. E. Eichinger (1993) Asymptotic expansions of some matrix argument hypergeometric functions, with applications to macromolecules. Ann. Inst. Statist. Math. 45 (3), pp. 467–475.
  • J. A. Wheeler (1937) Wave functions for large arguments by the amplitude-phase method. Phys. Rev. 52, pp. 1123–1127.