About the Project

analytic%20functions

AdvancedHelp

(0.004 seconds)

11—19 of 19 matching pages

11: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • T. H. Koornwinder (1974) Jacobi polynomials. II. An analytic proof of the product formula. SIAM J. Math. Anal. 5, pp. 125–137.
  • T. H. Koornwinder (1975b) Jacobi polynomials. III. An analytic proof of the addition formula. SIAM. J. Math. Anal. 6, pp. 533–543.
  • B. G. Korenev (2002) Bessel Functions and their Applications. Analytical Methods and Special Functions, Vol. 8, Taylor & Francis Ltd., London-New York.
  • 12: Tom M. Apostol
    Apostol was born on August 20, 1923. … He was internationally known for his textbooks on calculus, analysis, and analytic number theory, which have been translated into five languages, and for creating Project MATHEMATICS!, a series of video programs that bring mathematics to life with computer animation, live action, music, and special effects. …
  • Apostol served as a Validator for the original release and publication in May 2010 of the NIST Digital Library of Mathematical Functions and the NIST Handbook of Mathematical Functions.
    13: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • L. V. Ahlfors (1966) Complex Analysis: An Introduction of the Theory of Analytic Functions of One Complex Variable. 2nd edition, McGraw-Hill Book Co., New York.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen (1992b) Hypergeometric Functions and Elliptic Integrals. In Current Topics in Analytic Function Theory, H. M. Srivastava and S. Owa (Eds.), pp. 48–85.
  • 14: Bibliography W
  • E. L. Wachspress (2000) Evaluating elliptic functions and their inverses. Comput. Math. Appl. 39 (3-4), pp. 131–136.
  • P. L. Walker (2003) The analyticity of Jacobian functions with respect to the parameter k . Proc. Roy. Soc. London Ser A 459, pp. 2569–2574.
  • H. S. Wall (1948) Analytic Theory of Continued Fractions. D. Van Nostrand Company, Inc., New York.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • E. T. Whittaker (1964) A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. 4th edition, Cambridge University Press, Cambridge.
  • 15: 25.11 Hurwitz Zeta Function
    §25.11 Hurwitz Zeta Function
    §25.11(i) Definition
    As a function of a , with s ( 1 ) fixed, ζ ( s , a ) is analytic in the half-plane a > 0 . The Riemann zeta function is a special case: …
    §25.11(ii) Graphics
    16: Bibliography R
  • H. Rademacher (1938) On the partition function p(n). Proc. London Math. Soc. (2) 43 (4), pp. 241–254.
  • H. Rademacher (1973) Topics in Analytic Number Theory. Springer-Verlag, New York.
  • H. E. Rauch and A. Lebowitz (1973) Elliptic Functions, Theta Functions, and Riemann Surfaces. The Williams & Wilkins Co., Baltimore, MD.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • R. Reynolds and A. Stauffer (2021) Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics 9 (16).
  • 17: 18.39 Applications in the Physical Sciences
    Below we consider two potentials with analytically known eigenfunctions and eigenvalues where the spectrum is entirely point, or discrete, with all eigenfunctions being L 2 and forming a complete set. Also presented are the analytic solutions for the L 2 , bound state, eigenfunctions and eigenvalues of the Morse oscillator which also has analytically known non-normalizable continuum eigenfunctions, thus providing an example of a mixed spectrum. …
    1D Quantum Systems with Analytically Known Stationary States
    Other Analytically Solved Schrödinger Equations
    The discrete variable representations (DVR) analysis is simplest when based on the classical OP’s with their analytically known recursion coefficients (Table 3.5.17_5), or those non-classical OP’s which have analytically known recursion coefficients, making stable computation of the x i and w i , from the J-matrix as in §3.5(vi), straightforward. …
    18: Bibliography P
  • E. Pairman (1919) Tables of Digamma and Trigamma Functions. In Tracts for Computers, No. 1, K. Pearson (Ed.),
  • R. B. Paris (2002c) Exponential asymptotics of the Mittag-Leffler function. Proc. Roy. Soc. London Ser. A 458, pp. 3041–3052.
  • K. Pearson (Ed.) (1968) Tables of the Incomplete Beta-function. 2nd edition, Published for the Biometrika Trustees at the Cambridge University Press, Cambridge.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • A. Poquérusse and S. Alexiou (1999) Fast analytic formulas for the modified Bessel functions of imaginary order for spectral line broadening calculations. J. Quantit. Spec. and Rad. Trans. 62 (4), pp. 389–395.
  • 19: Bibliography C
  • J. Camacho, R. Guimerà, and L. A. N. Amaral (2002) Analytical solution of a model for complex food webs. Phys. Rev. E 65 (3), pp. (030901–1)–(030901–4).
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • J. A. Cochran (1966a) The analyticity of cross-product Bessel function zeros. Proc. Cambridge Philos. Soc. 62, pp. 215–226.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.