About the Project

along%20the%20real%20line

AdvancedHelp

(0.002 seconds)

21—30 of 684 matching pages

21: 27.15 Chinese Remainder Theorem
Their product m has 20 digits, twice the number of digits in the data. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
22: William P. Reinhardt
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    23: 4.3 Graphics
    §4.3(i) Real Arguments
    Figure 4.3.2 illustrates the conformal mapping of the strip π < z < π onto the whole w -plane cut along the negative real axis, where w = e z and z = ln w (principal value). …Lines parallel to the real axis in the z -plane map onto rays in the w -plane, and lines parallel to the imaginary axis in the z -plane map onto circles centered at the origin in the w -plane. In the labeling of corresponding points r is a real parameter that can lie anywhere in the interval ( 0 , ) . …
    See accompanying text
    Figure 4.3.3: ln ( x + i y ) (principal value). There is a branch cut along the negative real axis. Magnify 3D Help
    24: 20.7 Identities
    Also, in further development along the lines of the notations of Neville (§20.1) and of Glaisher (§22.2), the identities (20.7.6)–(20.7.9) have been recast in a more symmetric manner with respect to suffices 2 , 3 , 4 . … See Lawden (1989, pp. 19–20). …
    20.7.34 θ 1 ( z , q 2 ) θ 3 ( z , q 2 ) θ 1 ( z , i q ) = θ 2 ( z , q 2 ) θ 4 ( z , q 2 ) θ 2 ( z , i q ) = i 1 / 4 θ 2 ( 0 , q 2 ) θ 4 ( 0 , q 2 ) 2 .
    25: 36.4 Bifurcation Sets
    These are real solutions t j ( 𝐱 ) , 1 j j max ( 𝐱 ) K + 1 , of … Swallowtail self-intersection line: … Swallowtail cusp lines (ribs): … Elliptic umbilic cusp lines (ribs): … Hyperbolic umbilic cusp line (rib): …
    26: 10.75 Tables
  • Achenbach (1986) tabulates J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) , x = 0 ( .1 ) 8 , 20D or 18–20S.

  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ( z ) and K n ( z ) , for n = 2 ( 1 ) 20 , 9S.

  • Zhang and Jin (1996, p. 322) tabulates ber x , ber x , bei x , bei x , ker x , ker x , kei x , kei x , x = 0 ( 1 ) 20 , 7S.

  • Zhang and Jin (1996, p. 323) tabulates the first 20 real zeros of ber x , ber x , bei x , bei x , ker x , ker x , kei x , kei x , 8D.

  • 27: Staff
  • William P. Reinhardt, University of Washington, Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, Chaps. 20, 22, 23

  • William P. Reinhardt, University of Washington, for Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, for Chaps. 20, 22, 23

  • 28: 22.3 Graphics
    §22.3(i) Real Variables: Line Graphs
    Line graphs of the functions sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , cd ( x , k ) , sd ( x , k ) , nd ( x , k ) , dc ( x , k ) , nc ( x , k ) , sc ( x , k ) , ns ( x , k ) , ds ( x , k ) , and cs ( x , k ) for representative values of real x and real k illustrating the near trigonometric ( k = 0 ), and near hyperbolic ( k = 1 ) limits. …
    §22.3(ii) Real Variables: Surfaces
    sn ( x , k ) , cn ( x , k ) , and dn ( x , k ) as functions of real arguments x and k . …
    §22.3(iii) Complex z ; Real k
    29: 26.3 Lattice Paths: Binomial Coefficients
    The number of lattice paths from ( 0 , 0 ) to ( m , n ) , m n , that stay on or above the line y = x is ( m + n m ) ( m + n m 1 ) .
    Table 26.3.1: Binomial coefficients ( m n ) .
    m n
    6 1 6 15 20 15 6 1
    Table 26.3.2: Binomial coefficients ( m + n m ) for lattice paths.
    m n
    3 1 4 10 20 35 56 84 120 165
    26.3.3 n = 0 m ( m n ) x n = ( 1 + x ) m , m = 0 , 1 , ,
    26.3.4 m = 0 ( m + n m ) x m = 1 ( 1 x ) n + 1 , | x | < 1 .
    30: 4.15 Graphics
    §4.15(i) Real Arguments
    Figure 4.15.7 illustrates the conformal mapping of the strip 1 2 π < z < 1 2 π onto the whole w -plane cut along the real axis from to 1 and 1 to , where w = sin z and z = arcsin w (principal value). …Lines parallel to the real axis in the z -plane map onto ellipses in the w -plane with foci at w = ± 1 , and lines parallel to the imaginary axis in the z -plane map onto rectangular hyperbolas confocal with the ellipses. In the labeling of corresponding points r is a real parameter that can lie anywhere in the interval ( 0 , ) . …
    See accompanying text
    Figure 4.15.13: arccsc ( x + i y ) (principal value). There is a branch cut along the real axis from 1 to 1 . Magnify 3D Help