About the Project

along%20the%20real%20line

AdvancedHelp

(0.003 seconds)

11—20 of 684 matching pages

11: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 12: 23 Weierstrass Elliptic and Modular
    Functions
    13: Bibliography P
  • T. Pálmai and B. Apagyi (2011) Interlacing of positive real zeros of Bessel functions. J. Math. Anal. Appl. 375 (1), pp. 320–322.
  • R. B. Paris and W. N.-C. Sy (1983) Influence of equilibrium shear flow along the magnetic field on the resistive tearing instability. Phys. Fluids 26 (10), pp. 2966–2975.
  • R. B. Paris (2001a) On the use of Hadamard expansions in hyperasymptotic evaluation. I. Real variables. Proc. Roy. Soc. London Ser. A 457 (2016), pp. 2835–2853.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • A. Poquérusse and S. Alexiou (1999) Fast analytic formulas for the modified Bessel functions of imaginary order for spectral line broadening calculations. J. Quantit. Spec. and Rad. Trans. 62 (4), pp. 389–395.
  • 14: 36 Integrals with Coalescing Saddles
    15: Gergő Nemes
    As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
    16: Wolter Groenevelt
    As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
    17: 33.24 Tables
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ( η , ρ ) , G 0 ( η , ρ ) , F 0 ( η , ρ ) , and G 0 ( η , ρ ) for η = 0.5 ( .5 ) 20 and ρ = 1 ( 1 ) 20 , 5S; C 0 ( η ) for η = 0 ( .05 ) 3 , 6S.

  • 18: 14.22 Graphics
    See accompanying text
    Figure 14.22.1: P 1 / 2 0 ( x + i y ) , 5 x 5 , 5 y 5 . There is a cut along the real axis from to 1 . Magnify 3D Help
    See accompanying text
    Figure 14.22.2: P 1 / 2 1 / 2 ( x + i y ) , 5 x 5 , 5 y 5 . There is a cut along the real axis from to 1 . Magnify 3D Help
    See accompanying text
    Figure 14.22.3: P 1 / 2 1 ( x + i y ) , 5 x 5 , 5 y 5 . There is a cut along the real axis from to 1 . Magnify 3D Help
    See accompanying text
    Figure 14.22.4: 𝑸 0 0 ( x + i y ) , 5 x 5 , 5 y 5 . There is a cut along the real axis from 1 to 1 . Magnify 3D Help
    19: 6.19 Tables
    §6.19(ii) Real Variables
  • Zhang and Jin (1996, pp. 652, 689) includes Si ( x ) , Ci ( x ) , x = 0 ( .5 ) 20 ( 2 ) 30 , 8D; Ei ( x ) , E 1 ( x ) , x = [ 0 , 100 ] , 8S.

  • Abramowitz and Stegun (1964, Chapter 5) includes the real and imaginary parts of z e z E 1 ( z ) , x = 19 ( 1 ) 20 , y = 0 ( 1 ) 20 , 6D; e z E 1 ( z ) , x = 4 ( .5 ) 2 , y = 0 ( .2 ) 1 , 6D; E 1 ( z ) + ln z , x = 2 ( .5 ) 2.5 , y = 0 ( .2 ) 1 , 6D.

  • Zhang and Jin (1996, pp. 690–692) includes the real and imaginary parts of E 1 ( z ) , ± x = 0.5 , 1 , 3 , 5 , 10 , 15 , 20 , 50 , 100 , y = 0 ( .5 ) 1 ( 1 ) 5 ( 5 ) 30 , 50 , 100 , 8S.

  • 20: Peter L. Walker
    Walker’s published work has been mainly in real and complex analysis, with excursions into analytic number theory and geometry, the latter in collaboration with Professor Mowaffaq Hajja of the University of Jordan. …