About the Project

algebraic equations via Jacobian elliptic functions

AdvancedHelp

(0.004 seconds)

11—20 of 980 matching pages

11: 19.16 Definitions
§19.16(i) Symmetric Integrals
§19.16(ii) R a ( 𝐛 ; 𝐳 )
All elliptic integrals of the form (19.2.3) and many multiple integrals, including (19.23.6) and (19.23.6_5), are special cases of a multivariate hypergeometric function …The R -function is often used to make a unified statement of a property of several elliptic integrals. …
§19.16(iii) Various Cases of R a ( 𝐛 ; 𝐳 )
12: 5.2 Definitions
§5.2(i) Gamma and Psi Functions
Euler’s Integral
It is a meromorphic function with no zeros, and with simple poles of residue ( 1 ) n / n ! at z = n . …
5.2.6 ( a ) n = ( 1 ) n ( a n + 1 ) n ,
Pochhammer symbols (rising factorials) ( x ) n = x ( x + 1 ) ( x + n 1 ) and falling factorials ( 1 ) n ( x ) n = x ( x 1 ) ( x n + 1 ) can be expressed in terms of each other via
13: 31.1 Special Notation
(For other notation see Notation for the Special Functions.)
x , y real variables.
The main functions treated in this chapter are H ( a , q ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ( a , q m ; α , β , γ , δ ; z ) , ( s 1 , s 2 ) 𝐻𝑓 m ν ( a , q m ; α , β , γ , δ ; z ) , and the polynomial 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) . …Sometimes the parameters are suppressed.
14: 11.9 Lommel Functions
§11.9 Lommel Functions
The inhomogeneous Bessel differential equationFor uniform asymptotic expansions, for large ν and fixed μ = 1 , 0 , 1 , 2 , , of solutions of the inhomogeneous modified Bessel differential equation that corresponds to (11.9.1) see Olver (1997b, pp. 388–390). … …
15: 15.2 Definitions and Analytical Properties
§15.2(i) Gauss Series
The hypergeometric function F ( a , b ; c ; z ) is defined by the Gauss series … …
§15.2(ii) Analytic Properties
(Both interpretations give solutions of the hypergeometric differential equation (15.10.1), as does 𝐅 ( a , b ; c ; z ) , which is analytic at c = 0 , 1 , 2 , .) …
16: 9.12 Scorer Functions
§9.12 Scorer Functions
§9.12(i) Differential Equation
Standard particular solutions are …
§9.12(iii) Initial Values
§9.12(iv) Numerically Satisfactory Solutions
17: 14.20 Conical (or Mehler) Functions
§14.20 Conical (or Mehler) Functions
§14.20(i) Definitions and Wronskians
§14.20(ii) Graphics
Approximations for 𝖯 1 2 + i τ μ ( x ) and 𝖰 ^ 1 2 + i τ μ ( x ) can then be achieved via (14.9.7) and (14.20.3). …
18: 5.15 Polygamma Functions
§5.15 Polygamma Functions
The functions ψ ( n ) ( z ) , n = 1 , 2 , , are called the polygamma functions. In particular, ψ ( z ) is the trigamma function; ψ ′′ , ψ ( 3 ) , ψ ( 4 ) are the tetra-, penta-, and hexagamma functions respectively. Most properties of these functions follow straightforwardly by differentiation of properties of the psi function. … For B 2 k see §24.2(i). …
19: 16.13 Appell Functions
§16.13 Appell Functions
The following four functions of two real or complex variables x and y cannot be expressed as a product of two F 1 2 functions, in general, but they satisfy partial differential equations that resemble the hypergeometric differential equation (15.10.1):
16.13.1 F 1 ( α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m ( β ) n ( γ ) m + n m ! n ! x m y n , max ( | x | , | y | ) < 1 ,
16.13.4 F 4 ( α , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m + n ( γ ) m ( γ ) n m ! n ! x m y n , | x | + | y | < 1 .
20: 14.19 Toroidal (or Ring) Functions
§14.19 Toroidal (or Ring) Functions
§14.19(i) Introduction
This form of the differential equation arises when Laplace’s equation is transformed into toroidal coordinates ( η , θ , ϕ ) , which are related to Cartesian coordinates ( x , y , z ) by …
§14.19(iv) Sums
§14.19(v) Whipple’s Formula for Toroidal Functions