About the Project

addition law

AdvancedHelp

(0.001 seconds)

5 matching pages

1: 23.20 Mathematical Applications
β–ΊIn terms of ( x , y ) the addition law can be expressed ( x , y ) + o = ( x , y ) , ( x , y ) + ( x , y ) = o ; otherwise ( x 1 , y 1 ) + ( x 2 , y 2 ) = ( x 3 , y 3 ) , where … β–Ί
23.20.4 m = { ( 3 ⁒ x 1 2 + a ) / ( 2 ⁒ y 1 ) , P 1 = P 2 , ( y 2 y 1 ) / ( x 2 x 1 ) , P 1 P 2 .
β–ΊThe addition law states that to find the sum of two points, take the third intersection with C of the chord joining them (or the tangent if they coincide); then its reflection in the x -axis gives the required sum. …
2: 22.18 Mathematical Applications
β–ΊFor any two points ( x 1 , y 1 ) and ( x 2 , y 2 ) on this curve, their sum ( x 3 , y 3 ) , always a third point on the curve, is defined by the Jacobi–Abel addition law …With the identification x = sn ⁑ ( z , k ) , y = d ( sn ⁑ ( z , k ) ) / d z , the addition law (22.18.8) is transformed into the addition theorem (22.8.1); see Akhiezer (1990, pp. 42, 45, 73–74) and McKean and Moll (1999, §§2.14, 2.16). …
3: 25.16 Mathematical Applications
β–Ίwhich satisfies the reciprocity law β–Ί
25.16.12 H ⁑ ( s , z ) + H ⁑ ( z , s ) = ΢ ⁑ ( s ) ⁒ ΢ ⁑ ( z ) + ΢ ⁑ ( s + z ) ,
4: Bibliography C
β–Ί
  • H. S. Cohl (2013a) Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solution of the polyharmonic equation and polyspherical addition theorems. SIGMA Symmetry Integrability Geom. Methods Appl. 9, pp. Paper 042, 26.
  • 5: Bibliography K
    β–Ί
  • B. J. King and A. L. Van Buren (1973) A general addition theorem for spheroidal wave functions. SIAM J. Math. Anal. 4 (1), pp. 149–160.
  • β–Ί
  • A. V. Kitaev, C. K. Law, and J. B. McLeod (1994) Rational solutions of the fifth Painlevé equation. Differential Integral Equations 7 (3-4), pp. 967–1000.
  • β–Ί
  • D. A. Kofke (2004) Comment on “The incomplete beta function law for parallel tempering sampling of classical canonical systems” [J. Chem. Phys. 120, 4119 (2004)]. J. Chem. Phys. 121 (2), pp. 1167.
  • β–Ί
  • T. H. Koornwinder (1975b) Jacobi polynomials. III. An analytic proof of the addition formula. SIAM. J. Math. Anal. 6, pp. 533–543.
  • β–Ί
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.