About the Project

Zelle SuppOrt 1205 ~892~1862 Contact☎️☎️$☎️☎️ "Number"

AdvancedHelp

(0.001 seconds)

21—30 of 225 matching pages

21: 27.2 Functions
§27.2(i) Definitions
where p 1 , p 2 , , p ν ( n ) are the distinct prime factors of n , each exponent a r is positive, and ν ( n ) is the number of distinct primes dividing n . … (See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) …
§27.2(ii) Tables
22: 24.5 Recurrence Relations
§24.5 Recurrence Relations
24.5.3 k = 0 n 1 ( n k ) B k = 0 , n = 2 , 3 , ,
24.5.5 k = 0 n ( n k ) 2 k E n k + E n = 2 .
§24.5(ii) Other Identities
§24.5(iii) Inversion Formulas
23: 24.6 Explicit Formulas
§24.6 Explicit Formulas
24.6.1 B 2 n = k = 2 2 n + 1 ( 1 ) k 1 k ( 2 n + 1 k ) j = 1 k 1 j 2 n ,
24.6.4 E 2 n = k = 1 n 1 2 k 1 j = 1 k ( 1 ) j ( 2 k k j ) j 2 n ,
24.6.9 B n = k = 0 n 1 k + 1 j = 0 k ( 1 ) j ( k j ) j n ,
24.6.12 E 2 n = k = 0 2 n 1 2 k j = 0 k ( 1 ) j ( k j ) ( 1 + 2 j ) 2 n .
24: 27.13 Functions
§27.13(i) Introduction
Whereas multiplicative number theory is concerned with functions arising from prime factorization, additive number theory treats functions related to addition of integers. …The subsections that follow describe problems from additive number theory. …
§27.13(ii) Goldbach Conjecture
§27.13(iii) Waring’s Problem
25: 26.13 Permutations: Cycle Notation
The Stirling cycle numbers of the first kind, denoted by [ n k ] , count the number of permutations of { 1 , 2 , , n } with exactly k cycles. They are related to Stirling numbers of the first kind by …See §26.8 for generating functions, recurrence relations, identities, and asymptotic approximations. … The derangement number, d ( n ) , is the number of elements of 𝔖 n with no fixed points: … A permutation is even or odd according to the parity of the number of transpositions. …
26: Bibliography S
  • M. R. Schroeder (2006) Number Theory in Science and Communication: With Applications in Cryptography, Physics, Digital Information, Computing, and Self-Similarity. 4th edition, Springer-Verlag, Berlin.
  • I. Sh. Slavutskiĭ (1995) Staudt and arithmetical properties of Bernoulli numbers. Historia Sci. (2) 5 (1), pp. 69–74.
  • I. Sh. Slavutskiĭ (1999) About von Staudt congruences for Bernoulli numbers. Comment. Math. Univ. St. Paul. 48 (2), pp. 137–144.
  • I. Sh. Slavutskiĭ (2000) On the generalized Bernoulli numbers that belong to unequal characters. Rev. Mat. Iberoamericana 16 (3), pp. 459–475.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • 27: 27.9 Quadratic Characters
    §27.9 Quadratic Characters
    For an odd prime p , the Legendre symbol ( n | p ) is defined as follows. …
    27.9.2 ( 2 | p ) = ( 1 ) ( p 2 1 ) / 8 .
    If p , q are distinct odd primes, then the quadratic reciprocity law states that … If an odd integer P has prime factorization P = r = 1 ν ( n ) p r a r , then the Jacobi symbol ( n | P ) is defined by ( n | P ) = r = 1 ν ( n ) ( n | p r ) a r , with ( n | 1 ) = 1 . …
    28: 24.21 Software
    §24.21(ii) B n , B n ( x ) , E n , and E n ( x )
    29: 27.19 Methods of Computation: Factorization
    Techniques for factorization of integers fall into three general classes: Deterministic algorithms, Type I probabilistic algorithms whose expected running time depends on the size of the smallest prime factor, and Type II probabilistic algorithms whose expected running time depends on the size of the number to be factored. … As of January 2009 the largest prime factors found by these methods are a 19-digit prime for Brent–Pollard rho, a 58-digit prime for Pollard p 1 , and a 67-digit prime for ecm. … These algorithms include the Continued Fraction Algorithm (cfrac), the Multiple Polynomial Quadratic Sieve (mpqs), the General Number Field Sieve (gnfs), and the Special Number Field Sieve (snfs). …The snfs can be applied only to numbers that are very close to a power of a very small base. The largest composite numbers that have been factored by other Type II probabilistic algorithms are a 63-digit integer by cfrac, a 135-digit integer by mpqs, and a 182-digit integer by gnfs. …
    30: 26.17 The Twelvefold Way
    The twelvefold way gives the number of mappings f from set N of n objects to set K of k objects (putting balls from set N into boxes in set K ). …In this table ( k ) n is Pochhammer’s symbol, and S ( n , k ) and p k ( n ) are defined in §§26.8(i) and 26.9(i). …
    Table 26.17.1: The twelvefold way.
    elements of N elements of K f unrestricted f one-to-one f onto
    labeled labeled k n ( k n + 1 ) n k ! S ( n , k )
    labeled unlabeled S ( n , 1 ) + S ( n , 2 ) + + S ( n , k ) { 1 n k 0 n > k S ( n , k )