About the Project

Zelle Phone☎️+1(205↹892↹1862)☎️ "Number"

AdvancedHelp

Did you mean elle honneur☎️+1(205↹892↹1862)☎️ "Number" ?

(0.002 seconds)

1—10 of 227 matching pages

1: 24.1 Special Notation
Bernoulli Numbers and Polynomials
The origin of the notation B n , B n ( x ) , is not clear. …
Euler Numbers and Polynomials
Its coefficients were first studied in Euler (1755); they were called Euler numbers by Raabe in 1851. The notations E n , E n ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
2: 26.11 Integer Partitions: Compositions
c ( n ) denotes the number of compositions of n , and c m ( n ) is the number of compositions into exactly m parts. c ( T , n ) is the number of compositions of n with no 1’s, where again T = { 2 , 3 , 4 , } . …
26.11.1 c ( 0 ) = c ( T , 0 ) = 1 .
The Fibonacci numbers are determined recursively by … Additional information on Fibonacci numbers can be found in Rosen et al. (2000, pp. 140–145).
3: 27.18 Methods of Computation: Primes
§27.18 Methods of Computation: Primes
An overview of methods for precise counting of the number of primes not exceeding an arbitrary integer x is given in Crandall and Pomerance (2005, §3.7). …An analytic approach using a contour integral of the Riemann zeta function (§25.2(i)) is discussed in Borwein et al. (2000). … These algorithms are used for testing primality of Mersenne numbers, 2 n 1 , and Fermat numbers, 2 2 n + 1 . …
4: 26.6 Other Lattice Path Numbers
§26.6 Other Lattice Path Numbers
Delannoy Number D ( m , n )
Motzkin Number M ( n )
Narayana Number N ( n , k )
§26.6(iv) Identities
5: 24.15 Related Sequences of Numbers
§24.15 Related Sequences of Numbers
§24.15(i) Genocchi Numbers
§24.15(ii) Tangent Numbers
§24.15(iii) Stirling Numbers
§24.15(iv) Fibonacci and Lucas Numbers
6: 26.5 Lattice Paths: Catalan Numbers
§26.5 Lattice Paths: Catalan Numbers
§26.5(i) Definitions
C ( n ) is the Catalan number. …
§26.5(ii) Generating Function
§26.5(iii) Recurrence Relations
7: 25.11 Hurwitz Zeta Function
25.11.22 ζ ( 1 2 n , 1 2 ) = B 2 n ln 2 n 4 n ( 2 2 n 1 1 ) ζ ( 1 2 n ) 2 2 n 1 , n = 1 , 2 , 3 , .
25.11.23 ζ ( 1 2 n , 1 3 ) = π ( 9 n 1 ) B 2 n 8 n 3 ( 3 2 n 1 1 ) B 2 n ln 3 4 n 3 2 n 1 ( 1 ) n ψ ( 2 n 1 ) ( 1 3 ) 2 3 ( 6 π ) 2 n 1 ( 3 2 n 1 1 ) ζ ( 1 2 n ) 2 3 2 n 1 , n = 1 , 2 , 3 , .
25.11.32 0 a x n ψ ( x ) d x = ( 1 ) n 1 ζ ( n ) + ( 1 ) n H n B n + 1 n + 1 k = 0 n ( 1 ) k ( n k ) H k B k + 1 ( a ) k + 1 a n k + k = 0 n ( 1 ) k ( n k ) ζ ( k , a ) a n k , n = 1 , 2 , , a > 0 ,
where H n are the harmonic numbers:
25.11.33 H n = k = 1 n k 1 .
8: 26.14 Permutations: Order Notation
As an example, 35247816 is an element of 𝔖 8 . The inversion number is the number of pairs of elements for which the larger element precedes the smaller: … The Eulerian number, denoted n k , is the number of permutations in 𝔖 n with exactly k descents. …The Eulerian number n k is equal to the number of permutations in 𝔖 n with exactly k excedances. …
§26.14(iii) Identities
9: 26.7 Set Partitions: Bell Numbers
§26.7 Set Partitions: Bell Numbers
§26.7(i) Definitions
§26.7(ii) Generating Function
§26.7(iii) Recurrence Relation
§26.7(iv) Asymptotic Approximation
10: 26.8 Set Partitions: Stirling Numbers
§26.8 Set Partitions: Stirling Numbers
§26.8(i) Definitions
§26.8(v) Identities
§26.8(vi) Relations to Bernoulli Numbers