About the Project

Wilson polynomials

AdvancedHelp

(0.003 seconds)

21—30 of 33 matching pages

21: 16.4 Argument Unity
The characterizing properties (18.22.2), (18.22.10), (18.22.19), (18.22.20), and (18.26.14) of the Hahn and Wilson class polynomials are examples of the contiguous relations mentioned in the previous three paragraphs. …
22: Bibliography
  • R. Askey and J. Wilson (1985) Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54 (319), pp. iv+55.
  • 23: 18 Orthogonal Polynomials
    Chapter 18 Orthogonal Polynomials
    24: 18.27 q -Hahn Class
    The q -hypergeometric OP’s comprise the q -Hahn class (or q -linear lattice class) OP’s and the Askey–Wilson class (or q -quadratic lattice class) OP’s (§18.28). …
    §18.27(ii) q -Hahn Polynomials
    §18.27(iii) Big q -Jacobi Polynomials
    §18.27(iv) Little q -Jacobi Polynomials
    Little q -Laguerre polynomials
    25: 18.22 Hahn Class: Recurrence Relations and Differences
    §18.22(i) Recurrence Relations in n
    These polynomials satisfy (18.22.2) with p n ( x ) , A n , and C n as in Table 18.22.1.
    Table 18.22.1: Recurrence relations (18.22.2) for Krawtchouk, Meixner, and Charlier polynomials.
    p n ( x ) A n C n
    §18.22(ii) Difference Equations in x
    §18.22(iii) x -Differences
    26: 18.39 Applications in the Physical Sciences
    Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. …
    27: Bibliography P
  • A. M. Parkhurst and A. T. James (1974) Zonal Polynomials of Order 1 Through 12 . In Selected Tables in Mathematical Statistics, H. L. Harter and D. B. Owen (Eds.), Vol. 2, pp. 199–388.
  • P. I. Pastro (1985) Orthogonal polynomials and some q -beta integrals of Ramanujan. J. Math. Anal. Appl. 112 (2), pp. 517–540.
  • J. Patera and P. Winternitz (1973) A new basis for the representation of the rotation group. Lamé and Heun polynomials. J. Mathematical Phys. 14 (8), pp. 1130–1139.
  • L. Pauling and E. B. Wilson (1985) Introduction to quantum mechanics. Dover Publications, Inc., New York.
  • R. Piessens and M. Branders (1972) Chebyshev polynomial expansions of the Riemann zeta function. Math. Comp. 26 (120), pp. G1–G5.
  • 28: 18.19 Hahn Class: Definitions
    §18.19 Hahn Class: Definitions
  • 2.

    Wilson class (or quadratic lattice class). These are OP’s p n ( x ) = p n ( λ ( y ) ) ( p n ( x ) of degree n in x , λ ( y ) quadratic in y ) where the role of the differentiation operator is played by Δ y Δ y ( λ ( y ) ) or y y ( λ ( y ) ) or δ y δ y ( λ ( y ) ) . The Wilson class consists of two discrete and two continuous families.

  • Hahn, Krawtchouk, Meixner, and Charlier
    Tables 18.19.1 and 18.19.2 provide definitions via orthogonality and standardization (§§18.2(i), 18.2(iii)) for the Hahn polynomials Q n ( x ; α , β , N ) , Krawtchouk polynomials K n ( x ; p , N ) , Meixner polynomials M n ( x ; β , c ) , and Charlier polynomials C n ( x ; a ) . …
    29: Bibliography S
  • I. M. Sheffer (1939) Some properties of polynomial sets of type zero. Duke Math. J. 5, pp. 590–622.
  • A. Sri Ranga (2010) Szegő polynomials from hypergeometric functions. Proc. Amer. Math. Soc. 138 (12), pp. 4259–4270.
  • W. F. Sun (1996) Uniform asymptotic expansions of Hermite polynomials. M. Phil. thesis, City University of Hong Kong.
  • R. F. Swarttouw (1997) A computer implementation of the Askey-Wilson scheme. Technical Report 13 Vrije Universteit Amsterdam.
  • O. Szász (1950) On the relative extrema of ultraspherical polynomials. Boll. Un. Mat. Ital. (3) 5, pp. 125–127.
  • 30: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    Writing Hermite’s differential equation (see Tables 18.3.1 and 18.8.1) in the form above, the eigenfunctions are e x 2 / 2 H n ( x ) ( H n a Hermite polynomial, n = 0 , 1 , 2 , ), with eigenvalues λ n = 2 n + 1 𝝈 p , for the differential operator …
    1.18.42 ϕ n ( x ) = 1 π 1 2 2 n n ! e x 2 / 2 H n ( x ) ,
    1.18.43 f ( x ) = n = 0 e ( x 2 + y 2 ) / 2 π 1 2 2 n n ! H n ( x ) H n ( y ) f ( y ) d y ,
    The implicit boundary conditions taken here are that the ϕ n ( x ) and ϕ n ( x ) vanish as x ± , which in this case is equivalent to requiring ϕ n ( x ) L 2 ( X ) , see Pauling and Wilson (1985, pp. 67–82) for a discussion of this latter point. …