About the Project

Weierstrass zeta function

AdvancedHelp

(0.006 seconds)

11—20 of 23 matching pages

11: 23.9 Laurent and Other Power Series
β–Ί
23.9.3 ΢ ⁑ ( z ) = 1 z n = 2 c n 2 ⁒ n 1 ⁒ z 2 ⁒ n 1 , 0 < | z | < | z 0 | .
12: 23.12 Asymptotic Approximations
β–Ί
23.12.2 ΞΆ ⁑ ( z ) = Ο€ 2 4 ⁒ Ο‰ 1 2 ⁒ ( z 3 + 2 ⁒ Ο‰ 1 Ο€ ⁒ cot ⁑ ( Ο€ ⁒ z 2 ⁒ Ο‰ 1 ) 8 ⁒ ( z Ο‰ 1 Ο€ ⁒ sin ⁑ ( Ο€ ⁒ z Ο‰ 1 ) ) ⁒ q 2 + O ⁑ ( q 4 ) ) ,
13: 23.8 Trigonometric Series and Products
β–Ί
23.8.2 ΞΆ ⁑ ( z ) Ξ· 1 ⁒ z Ο‰ 1 Ο€ 2 ⁒ Ο‰ 1 ⁒ cot ⁑ ( Ο€ ⁒ z 2 ⁒ Ο‰ 1 ) = 2 ⁒ Ο€ Ο‰ 1 ⁒ n = 1 q 2 ⁒ n 1 q 2 ⁒ n ⁒ sin ⁑ ( n ⁒ Ο€ ⁒ z Ο‰ 1 ) .
β–Ί
23.8.4 ΞΆ ⁑ ( z ) = Ξ· 1 ⁒ z Ο‰ 1 + Ο€ 2 ⁒ Ο‰ 1 ⁒ n = cot ⁑ ( Ο€ ⁒ ( z + 2 ⁒ n ⁒ Ο‰ 3 ) 2 ⁒ Ο‰ 1 ) ,
14: 19.25 Relations to Other Functions
β–Ί
19.25.37 ΞΆ ⁑ ( z + 2 ⁒ Ο‰ ) + ( z + 2 ⁒ Ο‰ ) ⁒ ⁑ ( z ) = ± 2 ⁒ R G ⁑ ( ⁑ ( z ) e 1 ⁑ , ⁑ ( z ) e 2 ⁑ , ⁑ ( z ) e 3 ⁑ ) ,
β–Ί
19.25.39 ΞΆ ⁑ ( Ο‰ j ) + Ο‰ j ⁒ e j ⁑ = 2 ⁒ R G ⁑ ( 0 , e j ⁑ e k ⁑ , e j ⁑ e β„“ ⁑ ) ,
15: 23.21 Physical Applications
§23.21 Physical Applications
β–ΊThe Weierstrass function plays a similar role for cubic potentials in canonical form g 3 ⁑ + g 2 ⁑ ⁒ x 4 ⁒ x 3 . … β–Ί
§23.21(ii) Nonlinear Evolution Equations
β–Ί
§23.21(iii) Ellipsoidal Coordinates
β–Ί
  • String theory. See Green et al. (1988a, §8.2) and Polchinski (1998, §7.2).

  • 16: 22.1 Special Notation
    β–Ί(For other notation see Notation for the Special Functions.) … β–ΊThe functions treated in this chapter are the three principal Jacobian elliptic functions sn ⁑ ( z , k ) , cn ⁑ ( z , k ) , dn ⁑ ( z , k ) ; the nine subsidiary Jacobian elliptic functions cd ⁑ ( z , k ) , sd ⁑ ( z , k ) , nd ⁑ ( z , k ) , dc ⁑ ( z , k ) , nc ⁑ ( z , k ) , sc ⁑ ( z , k ) , ns ⁑ ( z , k ) , ds ⁑ ( z , k ) , cs ⁑ ( z , k ) ; the amplitude function am ⁑ ( x , k ) ; Jacobi’s epsilon and zeta functions β„° ⁑ ( x , k ) and Z ⁑ ( x | k ) . … β–ΊSimilarly for the other functions.
    17: Errata
    β–Ί
  • Equation (23.12.2)
    23.12.2 ΞΆ ⁑ ( z ) = Ο€ 2 4 ⁒ Ο‰ 1 2 ⁒ ( z 3 + 2 ⁒ Ο‰ 1 Ο€ ⁒ cot ⁑ ( Ο€ ⁒ z 2 ⁒ Ο‰ 1 ) 8 ⁒ ( z Ο‰ 1 Ο€ ⁒ sin ⁑ ( Ο€ ⁒ z Ο‰ 1 ) ) ⁒ q 2 + O ⁑ ( q 4 ) )

    Originally, the factor of 2 was missing from the denominator of the argument of the cot function.

    Reported by Blagoje Oblak on 2019-05-27

  • β–Ί
  • Equation (19.25.37)

    The Weierstrass zeta function was incorrectly linked to the definition of the Riemann zeta function. However, to the eye, the function appeared correct. The link was corrected.

  • 18: 23.23 Tables
    §23.23 Tables
    β–Ί2 in Abramowitz and Stegun (1964) gives values of ⁑ ( z ) , ⁑ ( z ) , and ΞΆ ⁑ ( z ) to 7 or 8D in the rectangular and rhombic cases, normalized so that Ο‰ 1 = 1 and Ο‰ 3 = i ⁒ a (rectangular case), or Ο‰ 1 = 1 and Ο‰ 3 = 1 2 + i ⁒ a (rhombic case), for a = 1. …05, and in the case of ⁑ ( z ) the user may deduce values for complex z by application of the addition theorem (23.10.1). β–ΊAbramowitz and Stegun (1964) also includes other tables to assist the computation of the Weierstrass functions, for example, the generators as functions of the lattice invariants g 2 ⁑ and g 3 ⁑ . β–ΊFor earlier tables related to Weierstrass functions see Fletcher et al. (1962, pp. 503–505) and Lebedev and Fedorova (1960, pp. 223–226).
    19: 29.2 Differential Equations
    β–Ί
    20: 31.2 Differential Equations
    β–Ί
    Weierstrass’s Form
    β–Ί
    ΢ = i ⁒ K ⁑ + ξ ⁒ ( e 1 ⁑ e 3 ⁑ ) 1 / 2 ,
    β–Ίwhere 2 ⁒ Ο‰ 1 and 2 ⁒ Ο‰ 3 with ⁑ ( Ο‰ 3 / Ο‰ 1 ) > 0 are generators of the lattice 𝕃 for ⁑ ( z | 𝕃 ) . … β–Ί
    31.2.10 w ⁑ ( ξ ) = ( ⁑ ( ξ ) e 3 ⁑ ) ( 1 2 ⁒ γ ) / 4 ⁒ ( ⁑ ( ξ ) e 2 ⁑ ) ( 1 2 ⁒ δ ) / 4 ⁒ ( ⁑ ( ξ ) e 1 ⁑ ) ( 1 2 ⁒ ϡ ) / 4 ⁒ W ⁑ ( ξ ) ,
    β–Ί
    31.2.11 d 2 W / d ΞΎ 2 + ( H + b 0 ⁒ ⁑ ( ΞΎ ) + b 1 ⁒ ⁑ ( ΞΎ + Ο‰ 1 ) + b 2 ⁒ ⁑ ( ΞΎ + Ο‰ 2 ) + b 3 ⁒ ⁑ ( ΞΎ + Ο‰ 3 ) ) ⁒ W = 0 ,